TY - JOUR
T1 - Highly Semiconducting One-Dimensional Porous ZnO Nanorod Array Nanogenerators for Mechanical Energy Harvesting Functions
AU - Lee, Dong Jin
AU - Kumar, Ganesan Mohan
AU - Kim, Deuk Young
AU - Ilanchezhiyan, Pugazhendi
N1 - Publisher Copyright:
© 2024 Dong Jin Lee et al.
PY - 2024
Y1 - 2024
N2 - The development of energy harvesters based on inexpensive inorganic materials has attracted considerable attention to envisage next-generation self-powered electronic devices. In this work, we presented surface modification of ZnO nanorods (NRs) by thermochemical reaction using photoresist (PR) as an etching source. The morphological and microstructural properties of surface-etched ZnO NRs (M: ZnO) were systematically studied in detail through SEM and HRTEM. The morphological results show that the surface-etched NRs possess nanofiber-like porous structures and are penetrated throughout the NRs with high surface area. We fabricated triboelectric nanogenerators (TENG) using M: ZnO NRs with poly (dimethylsiloxane) (PDMS) as negative triboelectric material and mica as positive triboelectric material. The prepared M: ZnO NR TENG successfully delivered an output voltage of up to 20 V and a current density of 3.2 μA cm-2, which is ∼1.5 times higher than those observed for smooth ZnO NRs, respectively. The prepared M: ZnO NR TENG device can be able to lit 24 red light-emitting diodes (LEDs) as the power source. Finally, to demonstrate the practical applications of M: ZnO NR TENG, it was attached to the human body (elbow, knee, wrist, and heel) and efficiently harvested the energy from daily human activities.
AB - The development of energy harvesters based on inexpensive inorganic materials has attracted considerable attention to envisage next-generation self-powered electronic devices. In this work, we presented surface modification of ZnO nanorods (NRs) by thermochemical reaction using photoresist (PR) as an etching source. The morphological and microstructural properties of surface-etched ZnO NRs (M: ZnO) were systematically studied in detail through SEM and HRTEM. The morphological results show that the surface-etched NRs possess nanofiber-like porous structures and are penetrated throughout the NRs with high surface area. We fabricated triboelectric nanogenerators (TENG) using M: ZnO NRs with poly (dimethylsiloxane) (PDMS) as negative triboelectric material and mica as positive triboelectric material. The prepared M: ZnO NR TENG successfully delivered an output voltage of up to 20 V and a current density of 3.2 μA cm-2, which is ∼1.5 times higher than those observed for smooth ZnO NRs, respectively. The prepared M: ZnO NR TENG device can be able to lit 24 red light-emitting diodes (LEDs) as the power source. Finally, to demonstrate the practical applications of M: ZnO NR TENG, it was attached to the human body (elbow, knee, wrist, and heel) and efficiently harvested the energy from daily human activities.
UR - http://www.scopus.com/inward/record.url?scp=85192679716&partnerID=8YFLogxK
U2 - 10.1155/2024/5546570
DO - 10.1155/2024/5546570
M3 - Article
AN - SCOPUS:85192679716
SN - 0363-907X
VL - 2024
JO - International Journal of Energy Research
JF - International Journal of Energy Research
M1 - 5546570
ER -