Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions

Jongsik Park, Taehyun Kwon, Jun Kim, Haneul Jin, Ho Young Kim, Byeongyoon Kim, Sang Hoon Joo, Kwangyeol Lee

Research output: Contribution to journalReview articlepeer-review

254 Scopus citations

Abstract

While the realization of clean and sustainable energy conversion systems primarily requires the development of highly efficient catalysts, one of the main issues had been designing the structure of the catalysts to fulfill minimum cost as well as maximum performance. Until now, noble metal-based nanocatalysts had shown outstanding performances toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). However, the scarcity and high cost of them impeded their practical use. Recently, hollow nanostructures including nanocages and nanoframes had emerged as a burgeoning class of promising electrocatalysts. The hollow nanostructures could expose a high proportion of active surfaces while saving the amounts of expensive noble metals. In this review, we introduced recent advances in the synthetic methodologies for generating noble metal-based hollow nanostructures based on thermodynamic and kinetic approaches. We summarized electrocatalytic applications of hollow nanostructures toward the ORR, OER, and HER. We next provided strategies that could endow structural robustness to the flimsy structural nature of hollow structures. Finally, we concluded this review with perspectives to facilitate the development of hollow nanostructure-based catalysts for energy applications.

Original languageEnglish
Pages (from-to)8173-8202
Number of pages30
JournalChemical Society Reviews
Volume47
Issue number22
DOIs
StatePublished - 21 Nov 2018

Fingerprint

Dive into the research topics of 'Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions'. Together they form a unique fingerprint.

Cite this