TY - JOUR
T1 - Human cell-based estrogen receptor beta dimerization assay
AU - Seo, Hyeyeong
AU - Seo, Huiwon
AU - Byrd, Nick
AU - Kim, Hyejin
AU - Lee, Kwang Geun
AU - Lee, Seok Hee
AU - Park, Yooheon
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/1/5
Y1 - 2023/1/5
N2 - Estrogen is not only responsible for important functions in the human body, such as cell growth, reproduction, differentiation, and development, but it is also deeply related to pathological processes, such as cancer, metabolic and cardiovascular diseases, and neurodegeneration. Estrogens and other estrogenic compounds have transcriptional activities through binding with the estrogen receptor (ER) to induce ER dimerization. The two estrogen receptor subtypes, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), show structural differences and have different expression ratios in specific cells and tissues. Currently, the methods for confirming the estrogenic properties of compounds are the binding (Test guideline no. 493) and transactivation (Test guideline no. 455) assays provided by the Organization for Economic Co-operation and Development (OECD). In a previous study, we developed an ERα dimerization assay based on the bioluminescence resonance energy transfer (BRET) system, but there are currently no available tests that can confirm the effect of estrogenic compounds on ERβ. Therefore, in this study, we developed a BRET-based ERβ dimerization assay to confirm the estrogenic prosperities of compounds. The BRET-based ERβ dimerization assay was verified using nine representative ER ligands and the results were compared with the dimerization activity of ERα. In conclusion, our BRET-based ERβ dimerization assay can provide information on the ERβ dimerization potential of estrogenic compounds.
AB - Estrogen is not only responsible for important functions in the human body, such as cell growth, reproduction, differentiation, and development, but it is also deeply related to pathological processes, such as cancer, metabolic and cardiovascular diseases, and neurodegeneration. Estrogens and other estrogenic compounds have transcriptional activities through binding with the estrogen receptor (ER) to induce ER dimerization. The two estrogen receptor subtypes, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), show structural differences and have different expression ratios in specific cells and tissues. Currently, the methods for confirming the estrogenic properties of compounds are the binding (Test guideline no. 493) and transactivation (Test guideline no. 455) assays provided by the Organization for Economic Co-operation and Development (OECD). In a previous study, we developed an ERα dimerization assay based on the bioluminescence resonance energy transfer (BRET) system, but there are currently no available tests that can confirm the effect of estrogenic compounds on ERβ. Therefore, in this study, we developed a BRET-based ERβ dimerization assay to confirm the estrogenic prosperities of compounds. The BRET-based ERβ dimerization assay was verified using nine representative ER ligands and the results were compared with the dimerization activity of ERα. In conclusion, our BRET-based ERβ dimerization assay can provide information on the ERβ dimerization potential of estrogenic compounds.
KW - Bioluminescence resonance energy transfer (BRET)
KW - Estrogen receptor beta (ERβ)
KW - Estrogenic compound
KW - in vitro dimerization assay
UR - http://www.scopus.com/inward/record.url?scp=85142135464&partnerID=8YFLogxK
U2 - 10.1016/j.cbi.2022.110264
DO - 10.1016/j.cbi.2022.110264
M3 - Article
C2 - 36402211
AN - SCOPUS:85142135464
SN - 0009-2797
VL - 369
JO - Chemico-Biological Interactions
JF - Chemico-Biological Interactions
M1 - 110264
ER -