Hybrid genetic algorithms and case-based reasoning systems

Hyunchul Ahn, Kyoung Jae Kim, Ingoo Han

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Case-based reasoning (CBR) has been applied to various problem-solving areas for a long time because it is suitable to complex and unstructured problems. However, the design of appropriate case retrieval mechanisms to improve the performance of CBR is still a challenging issue. In this paper, we encode the feature weighting and instance selection within the same genetic algorithm (GA) and suggest simultaneous optimization model of feature weighting and instance selection. This study applies the novel model to corporate bankruptcy prediction. Experimental results show that the proposed model out-performs other CBR models.

Fingerprint

Dive into the research topics of 'Hybrid genetic algorithms and case-based reasoning systems'. Together they form a unique fingerprint.

Cite this