Abstract
Graphene-based non-volatile memory devices composed of a single-layer graphene channel and an Al 2O 3/HfO x/Al 2O 3 charge-storage layer exhibit memory functionality. The impact of the gate material's work-function (Φ) on the memory characteristics is investigated using different types of metals [Ti (Φ Ti 4.3 eV) and Ni (Φ Ni 5.2 eV)]. The ambipolar carrier conduction of graphene results in an enlargement of memory window (ΔV M), which is ∼4.5 V for the Ti-gate device and ∼9.1 V for the Ni-gate device. The increase in ΔV M is attributed to the change in the flat-band condition and the suppression of electron back-injection within the gate stack.
Original language | English |
---|---|
Article number | 023109 |
Journal | Applied Physics Letters |
Volume | 100 |
Issue number | 2 |
DOIs | |
State | Published - 9 Jan 2012 |