Improved Knowledge Transfer for Semi-supervised Domain Adaptation via Trico Training Strategy

Ba Hung Ngo, Yeon Jeong Chae, Jung Eun Kwon, Jae Hyeon Park, Sung In Cho

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The motivation of the semi-supervised domain adaptation (SSDA) is to train a model by leveraging knowledge acquired from the plentiful labeled source combined with extremely scarce labeled target data to achieve the lowest error on the unlabeled target data at the testing time. However, due to inter-domain and intra-domain discrepancies, the improvement of classification accuracy is limited. To solve these, we propose the Trico-training method that utilizes a multilayer perceptron (MLP) classifier and two graph convolutional network (GCN) classifiers called interview GCN and intra-view GCN classifiers. The first co-training strategy exploits a correlation between MLP and inter-view GCN classifiers to minimize the inter-domain discrepancy, in which the inter-view GCN classifier provides its pseudo labels to teach the MLP classifier, which encourages class representation alignment across domains. In contrast, the MLP classifier gives feedback to the inter-view GCN classifier by using a new concept, 'pseudo-edge', for neighbor's feature aggregation. Doing this increases the data structure mining ability of the inter-view GCN classifier; thus, the quality of generated pseudo labels is improved. The second co-training strategy between MLP and intra-view GCN is conducted in a similar way to reduce the intra-domain discrepancy by enhancing the correlation between labeled and unlabeled target data. Due to an imbalance in classification accuracy between inter-view and intra-view GCN classifiers, we propose the third co-training strategy that encourages them to cooperate to address this problem. We verify the effectiveness of the proposed method on three standard SSDA benchmark datasets: Office-31, Office-Home, and DomainNet. The extended experimental results show that our method surpasses the prior state-of-the-art approaches in SSDA.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages19157-19166
Number of pages10
ISBN (Electronic)9798350307184
DOIs
StatePublished - 2023
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: 2 Oct 20236 Oct 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Country/TerritoryFrance
CityParis
Period2/10/236/10/23

Fingerprint

Dive into the research topics of 'Improved Knowledge Transfer for Semi-supervised Domain Adaptation via Trico Training Strategy'. Together they form a unique fingerprint.

Cite this