Improving Fall Classification Accuracy of Multi-Input Models Using Three-Axis Accelerometer and Heart Rate Variability Data

Seunghui Kim, Jae Eun Ko, Seungbin Baek, Daechang Kim, Sungmin Kim

Research output: Contribution to journalArticlepeer-review

Abstract

Reduced body movement and weakened musculoskeletal function as a result of aging increase the risk of falls and serious physical injuries requiring medical attention. To solve this problem, a fall prevention algorithm using an acceleration sensor has been developed, and research is being conducted to enable continuous monitoring using a Holter electrocardiograph. In this study, we implemented a multi-input model that can detect and classify movements, including falls, utilizing the baroreflex characteristics of the heart’s potential energy changes due to movement, measured with an electrocardiogram with a three-axis acceleration sensor and a Holter electrocardiograph. Patterns were identified from the various movement characteristics of acceleration sensor data using a deep learning model consisting of CNN-LSTM, and heart rate variability (HRV) data were analyzed using a wide learning model to provide additional weight values for fall classification. Finally, a multi-input model using wide and deep learning was proposed to enhance the accuracy of fall classification. The results show that the HRV increased in fall case except in two motion types, while it decreased when standing up from a chair, indicating the application of the baroreflex characteristics reflecting the heart’s potential energy. Compared to the classification model using conventional HRV and ACC, a higher accuracy was achieved in the multi-input model using ACC-HRV data, and a precision, recall, and F1 score of 0.91 was measured, indicating improved performance. This is expected to have a positive impact on fall prevention by improving the accuracy of fall classification in the elderly for 15 different movements.

Original languageEnglish
Article number1180
JournalSensors
Volume25
Issue number4
DOIs
StatePublished - Feb 2025

Keywords

  • fall classification
  • heart rate variability (HRV)
  • Holter electrocardiograph
  • multi-input model
  • three-axis acceleration sensor

Fingerprint

Dive into the research topics of 'Improving Fall Classification Accuracy of Multi-Input Models Using Three-Axis Accelerometer and Heart Rate Variability Data'. Together they form a unique fingerprint.

Cite this