Incorporation of glycine max merrill extract into layered double hydroxide through ion-exchange and reconstruction

Do Gak Jeung, Hyoung Jun Kim, Jae Min Oh

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

We incorporated extract of Glycine max Merrill (GM), which is generally known as soybean, into a layered double hydroxide (LDH) nanostructure through two different methods, ion-exchange and reconstruction. Through X-ray diffraction, field-emission scanning electron microscopy, and zeta-potential measurement, GM moiety seemed to be simply attached on the surface of LDH by ion-exchange process, while the extract could be incorporated in the inter-particle pore of LDHs by reconstruction reaction. The quantification exhibited that both incorporation method showed comparable extract loading capacity of 15.6 wt/wt% for GM-LDH hybrid prepared by ion-exchange (GML-I) and 18.6 wt/wt% for GM-LDH hybrid by reconstruction (GML-R). On the other hand, bioactive substance in both GM-LDH hybrids, revealed that GML-R has higher daidzein content (0.0286 wt/wt%) compared with GML-I (0.0108 wt/wt%). According to time-dependent daidzein release, we confirmed that GML-R showed pH dependent daidzein release; a higher amount of daidzein was released in pH 4.5 physiological condition than in pH 7.4, suggesting the drug delivery potential of GML-R. Furthermore, alkaline phosphatase activity and collagen fiber formation on human osteoblast-like MG-63 cells displayed that GML-R had superior possibility of osteoblast differentiation than GML-I. From these results, we concluded that reconstruction method was more effective for extract incorporation than ion-exchange reaction, due to its pH dependent release property and alkaline phosphatase activity.

Original languageEnglish
Article number1262
JournalNanomaterials
Volume9
Issue number9
DOIs
StatePublished - Sep 2019

Keywords

  • Alkaline phosphatase activity
  • Glycine max merrill extract
  • Incorporation method
  • Layered double hydroxide
  • Release

Fingerprint

Dive into the research topics of 'Incorporation of glycine max merrill extract into layered double hydroxide through ion-exchange and reconstruction'. Together they form a unique fingerprint.

Cite this