TY - JOUR
T1 - Interface engineering of G-PEDOT
T2 - PSS hole transport layer via interlayer chemical functionalization for enhanced efficiency of large-area hybrid solar cells and their charge transport investigation
AU - Hilal, Muhammad
AU - Han, Jeong In
N1 - Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2018/11/1
Y1 - 2018/11/1
N2 - In this study, in order to minimize the recombination current of free charge carriers in a large-area organic-inorganic hybrid solar cell (O-IHSCs), we improved the electrical conductivity of a graphene (G) and poly(3,4-ethylenedioxy thiophene)–poly(styrenesulfonate) (G-PEDOT:PSS) hole transport layer (HTL) by introducing various concentrations of synthesized graphene (G) into poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The electrical conductivity of G-PEDOT:PSS was enhanced to 932781.17 S m−1 via the addition of 2 mg/mL of G to PEDOT:PSS. The O-IHSCs fabricated with the highly conductive G-PEDOT:PSS composite as HTL enhanced the power conversion efficiency (PCE) to 3.90%, a 70% increase compared to O-IHSCs fabricated with pristine PEDOT:PSS HTL. However, the accumulation of G at a higher concentration (2.5 mg/mL) degrades the performance of the solar cell, which generated further defects or film aggregation, interfering with the fast transport of free charge carriers toward their respective electrodes. The G-PEDOT:PSS composite contained various types of functionalization via interfacial reaction between the G and PEDOT:PSS based on Raman and X-ray photoelectron spectroscopy studies. These chemical functionalizations provide an additional mechanism of charge transport via bridges enhancing the carrier mobility and suppression of recombination of free charge carriers, resulting in significant improvement in photovoltaic performance of the O-IHSCs.
AB - In this study, in order to minimize the recombination current of free charge carriers in a large-area organic-inorganic hybrid solar cell (O-IHSCs), we improved the electrical conductivity of a graphene (G) and poly(3,4-ethylenedioxy thiophene)–poly(styrenesulfonate) (G-PEDOT:PSS) hole transport layer (HTL) by introducing various concentrations of synthesized graphene (G) into poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The electrical conductivity of G-PEDOT:PSS was enhanced to 932781.17 S m−1 via the addition of 2 mg/mL of G to PEDOT:PSS. The O-IHSCs fabricated with the highly conductive G-PEDOT:PSS composite as HTL enhanced the power conversion efficiency (PCE) to 3.90%, a 70% increase compared to O-IHSCs fabricated with pristine PEDOT:PSS HTL. However, the accumulation of G at a higher concentration (2.5 mg/mL) degrades the performance of the solar cell, which generated further defects or film aggregation, interfering with the fast transport of free charge carriers toward their respective electrodes. The G-PEDOT:PSS composite contained various types of functionalization via interfacial reaction between the G and PEDOT:PSS based on Raman and X-ray photoelectron spectroscopy studies. These chemical functionalizations provide an additional mechanism of charge transport via bridges enhancing the carrier mobility and suppression of recombination of free charge carriers, resulting in significant improvement in photovoltaic performance of the O-IHSCs.
KW - G-PEDOT:PSS
KW - Interlayer functionalization
KW - Organic-inorganic hybrid solar cell
KW - Press technology
UR - http://www.scopus.com/inward/record.url?scp=85054182611&partnerID=8YFLogxK
U2 - 10.1016/j.solener.2018.09.031
DO - 10.1016/j.solener.2018.09.031
M3 - Article
AN - SCOPUS:85054182611
SN - 0038-092X
VL - 174
SP - 743
EP - 756
JO - Solar Energy
JF - Solar Energy
ER -