Abstract
Harnessing the potential of mechanoluminescence (ML) for practical applications necessitates innovations that maximize brightness while simplifying the platform. Our study introduces a pioneering interfacial modification technique that enhances the internal triboelectric field in a self-recoverable ML platform based on zinc sulfide@metal oxide phosphor and a polydimethylsiloxane matrix. By chemically functionalizing the surface of metal oxide shells with benzoic acid derivatives, we modulate surface charge density thereby intensifying the triboelectric field within the ML platform. Utilizing a range of derivatives with varying dipole moments establishes a direct relationship between dipole moment strength and triboelectric enhancement. Notably, introducing aminobenzoic acid (ABA) onto the surface of the aluminum oxide (AlOx) shell results in a significant increase in ML brightness. Our strategy to easily adjust the ML brightness has been applied to anti-counterfeiting applications. Our study not only reveals the correlation between surface triboelectric fields and ML performance but also provides the possibility for practical use of self-recoverable ML platforms in various application fields, including smart textiles, health monitoring systems, and wearable displays.
Original language | English |
---|---|
Pages (from-to) | 4-11 |
Number of pages | 8 |
Journal | Materials Today |
Volume | 81 |
DOIs | |
State | Published - Dec 2024 |
Keywords
- Dipole moment
- Mechanoluminescence
- Self-recoverable
- Surface functionalization
- Triboelectric field