Abstract
In the present work, porous 3D CdO-microstructured electrode obtained by pyrolysis of 3D CdCO3 microstructures is self-sensitized with CdSe using an ion exchange reaction. After sensitization, an interfacial treatment of the CdO-CdSe interface is performed by depositing a thin film of PEDOT using a photoinduce polymerization route. The microstructured electrode before and after interfacial treatment is characterized using field-emission scanning microscope, energy dispersive X-ray analyzer, contact angle measurement, UV-Visible absorption spectrophotometer and X-ray photoelectron spectrometer. After constructing a liquid junction solar cell with a Pt counter electrode, the photovoltaic performance and interfacial charge transfer kinetics across the CdO-CdSe interface before and after PEDOT treatment are investigated. The results exhibit an improved interfacial charge-transfer resistance after the PEDOT treatment, which leads to enhance the short-circuit current by 15.81% and the power conversion efficiency by 19.82%.
Original language | English |
---|---|
Pages (from-to) | 780-785 |
Number of pages | 6 |
Journal | Photochemistry and Photobiology |
Volume | 91 |
Issue number | 4 |
DOIs | |
State | Published - 1 Jul 2015 |