Large-area monolayer hexagonal boron nitride on Pt foil

Ji Hoon Park, Jin Cheol Park, Seok Joon Yun, Hyun Kim, Dinh Hoa Luong, Soo Min Kim, Soo Ho Choi, Woochul Yang, Jing Kong, Ki Kang Kim, Young Hee Lee

Research output: Contribution to journalArticlepeer-review

214 Scopus citations

Abstract

Hexagonal boron nitride (h-BN) has recently been in the spotlight due to its numerous applications including its being an ideal substrate for two-dimensional electronics, a tunneling material for vertical tunneling devices, and a growth template for heterostructures. However, to obtain a large area of h-BN film while maintaining uniform thickness is still challenging and has not been realized. Here, we report the systematical study of h-BN growth on Pt foil by using low pressure chemical vapor deposition with a borazine source. The monolayer h-BN film was obtained over the whole Pt foil (2 × 5 cm 2) under <100 mTorr, where the size is limited only by the Pt foil size. A borazine source was catalytically decomposed on the Pt surface, leading to the self-limiting growth of the monolayer without the associating precipitation, which is very similar to the growth of graphene on Cu. The orientation of the h-BN domains was largely confined by the Pt domain, which is confirmed by polarizing optical microscopy (POM) assisted by the nematic liquid crystal (LC) film. The total pressure and orientation of the Pt lattice plane are crucial parameters for thickness control. At high pressure (∼0.5 Torr), thick film was grown on Pt (111), and in contrast, thin film was grown on Pt (001). Our advances in monolayer h-BN growth will play an important role to further develop a high quality h-BN film that can be used for vertical tunneling, optoelectronic devices and growth templates for a variety of heterostructures.

Original languageEnglish
Pages (from-to)8520-8528
Number of pages9
JournalACS Nano
Volume8
Issue number8
DOIs
StatePublished - 26 Aug 2014

Keywords

  • borazine
  • chemical vapor deposition
  • hexagonal boron nitride
  • nematic liquid crystal
  • platinum foil

Fingerprint

Dive into the research topics of 'Large-area monolayer hexagonal boron nitride on Pt foil'. Together they form a unique fingerprint.

Cite this