Abstract
The sustainable computer-based evaluation system (SCE) is a scenario-based formative evaluation system, in which students are assigned a task during a course. The tasks include the diversity conditions in real-world scenarios. The goals of this system are learning to think as a professional in a certain discipline. While the substantive, psychological, instructional, and task developmental aspects of the assessment have been investigated, few analytic methods have been proposed that allow us to provide feedback to learners in a formative way. The purpose of this paper is to introduce a framework of a learning analytic method including (1) an assessment design through evidence-centered design (ECD), (2) a data mining method using social network analysis, and (3) an analytic method using a Bayesian network. This analytic framework can analyze the learners' performances based on a computational psychometric framework. The tasks were designed to measure 21st century learning skills. The 250 samples of data collected from the system were analyzed. The results from the social network analysis provide the learning path during a course. In addition, the 21st century learning skills of each learner were inferred from the Bayesian network over multiple time points. Therefore, the learning analytics proposed in this study can offer the student learning progression as well as effective feedback for learning.
Original language | English |
---|---|
Article number | 7950 |
Journal | Sustainability (Switzerland) |
Volume | 12 |
Issue number | 19 |
DOIs | |
State | Published - Oct 2020 |
Keywords
- 21st century learning skills
- Assessment
- Computational psychometrics
- People analytics
- Sustainable computer-based evaluation system online