Machine learning-based obesity classification considering 3D body scanner measurements

Seungjin Jeon, Minji Kim, Jiwun Yoon, Sangyong Lee, Sekyoung Youm

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Obesity can cause various diseases and is a serious health concern. BMI, which is currently the popular measure for judging obesity, does not accurately classify obesity; it reflects the height and weight but ignores the characteristics of an individual’s body type. In order to overcome the limitations of classifying obesity using BMI, we considered 3-dimensional (3D) measurements of the human body. The scope of our study was limited to Korean subjects. In order to expand 3D body scan data clinically, 3D body scans, Dual-energy X-ray absorptiometry, and Bioelectrical Impedance Analysis data was collected pairwise for 160 Korean subjects. A machine learning-based obesity classification framework using 3D body scan data was designed, validated through Accuracy, Recall, Precision, and F1 score, and compared with BMI and BIA. In a test dataset of 40 people, BMI had the following values: Accuracy: 0.529, Recall: 0.472, Precision: 0.458, and F1 score: 0.462, while BIA had the following values: Accuracy: 0.752, Recall: 0.742, Precision: 0.751, and F1 score: 0.739. Our proposed model had the following values: Accuracy: 0.800, Recall: 0.767, Precision: 0.842, and F1 score: 0.792. Thus, our accuracy was higher than BMI as well as BIA. Our model can be used for obesity management through 3D body scans.

Original languageEnglish
Article number3299
JournalScientific Reports
Volume13
Issue number1
DOIs
StatePublished - Dec 2023

Fingerprint

Dive into the research topics of 'Machine learning-based obesity classification considering 3D body scanner measurements'. Together they form a unique fingerprint.

Cite this