Abstract
The fungicide carbendazim (CBZ) is generally used to make crops more resistant to pathogens. However, because pesticide residues due to overuse have polluted food products, they have become a global public health problem. Ultralow-level determination of CBZ in food products has become crucial for health protection and environmental safety; however, the task remains challenging. In this study, a composite containing Mn-doped ZnS was prepared with a facile reflux approach. Compared with conventional ZnS electrodes and GCEs, the hierarchical Mn-doped ZnS microspheres with abundant edge/defect sites improve the interface charge transfer capacity, thereby resulting in a lower Rct. The Mn-doped ZnS-GCE displays excellent electrocatalytic sensing ability for CBZ in 0.05 M PBS at a higher anodic current and low sensing potential compared to those of other ZnS electrodes and GCEs. The square wave voltammetry (SWV) results confirm that the Mn-doped ZnS-GCE has a more comprehensive linear working range (5–120 nM) for CBZ, and the measured ultralow detection limit for CBZ is 0.03 nM. Interestingly, we investigated the real-time applicability of the Mn-doped ZnS-GCE for the precise identification of spiked CBZ in lemon wash water samples, tomato sauce, and orange juice samples with satisfactory recovery.
Original language | English |
---|---|
Article number | 107204 |
Journal | Microchemical Journal |
Volume | 175 |
DOIs | |
State | Published - Apr 2022 |
Keywords
- Carbendazim
- Electrochemical sensor
- Modified electrode
- Nanocomposite
- Square wave voltammetry