Mechanistic insights into high lithium storage performance of mesoporous chromium nitride anchored on nitrogen-doped carbon nanotubes

Memona Idrees, Syed Mustansar Abbas, Ata-Ur-Rehman, Nisar Ahmad, Muhammad Waheed Mushtaq, Rizwan Ali Naqvi, Kyung Wan Nam, Bakhtiar Muhammad, Zafar Iqbal

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Chromium nitride (CrN) synthesized by heating at 550 °C under a continuous stream of ammonia has been investigated as anode material for lithium electrochemistry. Due to its low lithium insertion potential, Cr is an attractive material for lithium–ion battery application, but the usual volume variation effect obstructs its practical use. In this study, different concentrations of carbon nanotubes doped with nitrogen (NCNTs) are combined with CrN to attain high electrochemical performance. The synthesized CrN/0.08%–NCNTs nanocomposite demonstrates network structure with 30–40 nm CrN nanoparticles anchored to specific sites on 40–60 nm diameter NCNTs. Upon electrochemical testing, CrN/0.08%–NCNTs nanocomposite displays a discharge capacity of 1172 mAh g−1 after 200 cycles with high coulombic efficiency (∼100%) and rate capability. The electrode can deliver a reversible capacity of 1042.9 mAh g−1 at 20 C. The n-type concentration, along with the conductive CNTs framework, mesoporous channels, appropriate surface area and buffering capability of CNTs, are together responsible for the excellent electrochemical performance. The electrochemical reaction mechanism of CrN with lithium is explored by investigating the structural changes using ex situ X-ray photoelectron spectroscopy, X-ray diffraction, selected area electron diffraction, and high-resolution transmission electron microscopy. The reversible conversion reaction of CrN into Cr metal and Li3N is revealed.

Original languageEnglish
Pages (from-to)361-370
Number of pages10
JournalChemical Engineering Journal
Volume327
DOIs
StatePublished - 2017

Keywords

  • Anode
  • Carbon nanotubes
  • Chromium nitride
  • Lithium ion battery
  • N-doped

Fingerprint

Dive into the research topics of 'Mechanistic insights into high lithium storage performance of mesoporous chromium nitride anchored on nitrogen-doped carbon nanotubes'. Together they form a unique fingerprint.

Cite this