Metabolic engineering of Enterobacter aerogenes for 2,3-butanediol production from sugarcane bagasse hydrolysate

Jaeyong Um, Duck Gyun Kim, Moo Young Jung, Ganesh D. Saratale, Min Kyu Oh

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

The pathway engineering of Enterobacter aerogenes was attempted to improve its production capability of 2,3–butanediol from lignocellulosic biomass. In the medium containing glucose and xylose mixture as carbon sources, the gene deletion of pflB improved 2,3-butanediol carbon yield by 40%, while the deletion of ptsG increased xylose consumption rate significantly, improving the productivity at 12 hr by 70%. The constructed strain, EMY-22-galP, overexpressing glucose transporter (galP) in the triple gene knockout E. aerogenes, ldhA, pflB, and ptsG, provided the highest 2,3-butanediol titer and yield at 12 hr flask cultivation. Sugarcane bagasse was pretreated with green liquor, a solution containing Na2CO3 and Na2SO3 and was hydrolyzed by enzymes. The resulting hydrolysate was used as a carbon source for 2,3-butanediol production. After 72 hr in fermentation, the yield of 0.395 g/g sugar was achieved, suggesting an economic production of 2,3-butanediol was possible from lignocellulosic biomass with the metabolically engineered strain.

Original languageEnglish
Pages (from-to)1567-1574
Number of pages8
JournalBioresource Technology
Volume245
DOIs
StatePublished - Dec 2017

Keywords

  • 2,3-Butanediol
  • Enterobacter aerogenes
  • Metabolic engineering
  • Sugarcane bagasse

Fingerprint

Dive into the research topics of 'Metabolic engineering of Enterobacter aerogenes for 2,3-butanediol production from sugarcane bagasse hydrolysate'. Together they form a unique fingerprint.

Cite this