Micropatterned vertically aligned carbon nanotube growth on a Si surface or inside trenches for field-emission devices

Jung Inn Sohn, Seonghoon Lee, Yoon Ho Song, Sung Yool Choi, Jin Ho Lee, Young Il Kang

Research output: Contribution to journalArticlepeer-review

Abstract

The good field-emission properties of carbon nanotubes coupled with their high mechanical strength, chemical stability, and high aspect ratio, make them ideal candidates for the construction of efficient and inexpensive field-emission electronic devices. The fabrication process reported here has considerable potential for use in the development of integrated radio frequency amplifiers or field emission-controllable cold electron guns for field emission displays. This fabrication process is compatible with currently used semiconductor processing technologies. Micropatterned vertically aligned carbon nanotubes were grown on planar Si surface or inside the trenches, using chemical vapor deposition, photolithography, pulsed-laser deposition, reactive ion etching, and the lift-off method. To control the field-emission current by a 3rd electrode, the gate electrode, we grew carbon nanotubes inside the trenches. This triode-type structure is the best to realize the gray-scale carbon nanotube field emission. This carbon nanotube fabrication process can be widely applied for the development of electronic devices using carbon nanotube field emitters as cold cathodes and could revolutionize the area of field-emitting electronic devices such as RF amplifiers and field emission displays.

Original languageEnglish
Pages (from-to)9-15
Number of pages7
JournalMaterials Research Society Symposium Proceedings
Volume706
StatePublished - 2002

Fingerprint

Dive into the research topics of 'Micropatterned vertically aligned carbon nanotube growth on a Si surface or inside trenches for field-emission devices'. Together they form a unique fingerprint.

Cite this