TY - JOUR
T1 - Micropatterned vertically aligned carbon nanotube growth on a Si surface or inside trenches for field-emission devices
AU - Sohn, Jung Inn
AU - Lee, Seonghoon
AU - Song, Yoon Ho
AU - Choi, Sung Yool
AU - Lee, Jin Ho
AU - Kang, Young Il
PY - 2002
Y1 - 2002
N2 - The good field-emission properties of carbon nanotubes coupled with their high mechanical strength, chemical stability, and high aspect ratio, make them ideal candidates for the construction of efficient and inexpensive field-emission electronic devices. The fabrication process reported here has considerable potential for use in the development of integrated radio frequency amplifiers or field emission-controllable cold electron guns for field emission displays. This fabrication process is compatible with currently used semiconductor processing technologies. Micropatterned vertically aligned carbon nanotubes were grown on planar Si surface or inside the trenches, using chemical vapor deposition, photolithography, pulsed-laser deposition, reactive ion etching, and the lift-off method. To control the field-emission current by a 3rd electrode, the gate electrode, we grew carbon nanotubes inside the trenches. This triode-type structure is the best to realize the gray-scale carbon nanotube field emission. This carbon nanotube fabrication process can be widely applied for the development of electronic devices using carbon nanotube field emitters as cold cathodes and could revolutionize the area of field-emitting electronic devices such as RF amplifiers and field emission displays.
AB - The good field-emission properties of carbon nanotubes coupled with their high mechanical strength, chemical stability, and high aspect ratio, make them ideal candidates for the construction of efficient and inexpensive field-emission electronic devices. The fabrication process reported here has considerable potential for use in the development of integrated radio frequency amplifiers or field emission-controllable cold electron guns for field emission displays. This fabrication process is compatible with currently used semiconductor processing technologies. Micropatterned vertically aligned carbon nanotubes were grown on planar Si surface or inside the trenches, using chemical vapor deposition, photolithography, pulsed-laser deposition, reactive ion etching, and the lift-off method. To control the field-emission current by a 3rd electrode, the gate electrode, we grew carbon nanotubes inside the trenches. This triode-type structure is the best to realize the gray-scale carbon nanotube field emission. This carbon nanotube fabrication process can be widely applied for the development of electronic devices using carbon nanotube field emitters as cold cathodes and could revolutionize the area of field-emitting electronic devices such as RF amplifiers and field emission displays.
UR - http://www.scopus.com/inward/record.url?scp=0036354066&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0036354066
SN - 0272-9172
VL - 706
SP - 9
EP - 15
JO - Materials Research Society Symposium Proceedings
JF - Materials Research Society Symposium Proceedings
ER -