TY - JOUR
T1 - Modeling flexible pharmacophores with distance geometry, scoring, and bound stretching
AU - Binns, Michael
AU - De Visser, Sam P.
AU - Theodoropoulos, Constantinos
PY - 2012/2/27
Y1 - 2012/2/27
N2 - The study of pharmacophores, i.e., of common features between different ligands, is important for the quantitative identification of "compatible" enzymes and binding species. A pharmacophore-based technique is developed that combines multiple conformations with a distance geometry method to create flexible pharmacophore representations. It uses a set of low-energy conformations combined with a new process we call bound stretching to create sets of distance bounds, which contain all or most of the low-energy conformations. The bounds can be obtained using the exact distances between pairs of atoms from the different low-energy conformations. To avoid missing conformations, we can take advantage of the triangle distance inequality between sets of three points to logically expand a set of upper and lower distance bounds (bound stretching). The flexible pharmacophore can be found using a 3-D maximal common subgraph method, which uses the overlap of distance bounds to determine the overlapping structure. A scoring routine is implemented to select the substructures with the largest overlap because there will typically be many overlaps with the maximum number of overlapping bounds. A case study is presented in which 3-D flexible pharmacophores are generated and used to eliminate potential binding species identified by a 2-D pharmacophore method. A second case study creates flexible pharmacophores from a set of thrombin ligands. These are used to compare the new method with existing pharmacophore identification software.
AB - The study of pharmacophores, i.e., of common features between different ligands, is important for the quantitative identification of "compatible" enzymes and binding species. A pharmacophore-based technique is developed that combines multiple conformations with a distance geometry method to create flexible pharmacophore representations. It uses a set of low-energy conformations combined with a new process we call bound stretching to create sets of distance bounds, which contain all or most of the low-energy conformations. The bounds can be obtained using the exact distances between pairs of atoms from the different low-energy conformations. To avoid missing conformations, we can take advantage of the triangle distance inequality between sets of three points to logically expand a set of upper and lower distance bounds (bound stretching). The flexible pharmacophore can be found using a 3-D maximal common subgraph method, which uses the overlap of distance bounds to determine the overlapping structure. A scoring routine is implemented to select the substructures with the largest overlap because there will typically be many overlaps with the maximum number of overlapping bounds. A case study is presented in which 3-D flexible pharmacophores are generated and used to eliminate potential binding species identified by a 2-D pharmacophore method. A second case study creates flexible pharmacophores from a set of thrombin ligands. These are used to compare the new method with existing pharmacophore identification software.
UR - http://www.scopus.com/inward/record.url?scp=84857536919&partnerID=8YFLogxK
U2 - 10.1021/ci200442h
DO - 10.1021/ci200442h
M3 - Article
C2 - 22235879
AN - SCOPUS:84857536919
SN - 1549-9596
VL - 52
SP - 577
EP - 588
JO - Journal of Chemical Information and Modeling
JF - Journal of Chemical Information and Modeling
IS - 2
ER -