TY - JOUR
T1 - Ni-doped MnO2/Ti3C2Tx MXene nanocomposite for highly sensitive electrochemical ammonia gas sensing at room temperature
AU - Elancheziyan, Mari
AU - Singh, Manisha
AU - Bhuvanendran, Narayanamoorthy
AU - Won, Kee hoon
N1 - Publisher Copyright:
© 2025 Elsevier B.V.
PY - 2025/4/10
Y1 - 2025/4/10
N2 - Highly sensitive ammonia (NH3) gas sensors play a critical role in various industries due to their direct implication for health and safety. Nanocomposites have gained massive attention for recent electrochemical gas sensing. In this work, we first propose a Ni-doped MnO2/Ti3C2Tx MXene nanocomposite material for electrochemical NH3 gas sensing at room temperature. Ni-doped MnO2 nanowires were introduced to Ti3C2Tx MXene using a self-assembly technique to develop a high-performance gas sensor. The nanocomposite was characterized using BET, SEM-EDS, XRD, and XPS analyses, which revealed that the Ni-MnO2 nanowires were uniformly distributed on the MXene surface, significantly increasing the surface area. The Ni-MnO2/Ti3C2Tx MXene nanocomposite was immobilized on a screen-printed carbon electrode (SPCE), which is the most appropriate platform for portable and convenient electrochemical sensors, and ionic liquid was used as an electrolyte to achieve high stability. Electrochemical analysis showed that this new NH3 gas sensor had outstanding performance with a higher sensitivity and a lower detection limit of 0.072 µA/ppm and 0.23 ppm, respectively. It also exhibited a fast response time of 45 s at 20 ppm NH3 gas, high repeatability, selectivity, and long-term stability. In addition, the electrochemical NH3 gas nanosensor was successfully demonstrated to monitor food freshness.
AB - Highly sensitive ammonia (NH3) gas sensors play a critical role in various industries due to their direct implication for health and safety. Nanocomposites have gained massive attention for recent electrochemical gas sensing. In this work, we first propose a Ni-doped MnO2/Ti3C2Tx MXene nanocomposite material for electrochemical NH3 gas sensing at room temperature. Ni-doped MnO2 nanowires were introduced to Ti3C2Tx MXene using a self-assembly technique to develop a high-performance gas sensor. The nanocomposite was characterized using BET, SEM-EDS, XRD, and XPS analyses, which revealed that the Ni-MnO2 nanowires were uniformly distributed on the MXene surface, significantly increasing the surface area. The Ni-MnO2/Ti3C2Tx MXene nanocomposite was immobilized on a screen-printed carbon electrode (SPCE), which is the most appropriate platform for portable and convenient electrochemical sensors, and ionic liquid was used as an electrolyte to achieve high stability. Electrochemical analysis showed that this new NH3 gas sensor had outstanding performance with a higher sensitivity and a lower detection limit of 0.072 µA/ppm and 0.23 ppm, respectively. It also exhibited a fast response time of 45 s at 20 ppm NH3 gas, high repeatability, selectivity, and long-term stability. In addition, the electrochemical NH3 gas nanosensor was successfully demonstrated to monitor food freshness.
KW - Ammonia sensing
KW - Electrochemical gas sensor
KW - Ionic liquid electrolyte
KW - Ni-doped MnO
KW - TiCT MXene
UR - http://www.scopus.com/inward/record.url?scp=105000849762&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2025.179941
DO - 10.1016/j.jallcom.2025.179941
M3 - Article
AN - SCOPUS:105000849762
SN - 0925-8388
VL - 1022
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 179941
ER -