TY - JOUR
T1 - Nitridation-induced in situ coupling of Ni-Co4N particles in nitrogen-doped carbon nanosheets for hybrid supercapacitors
AU - Shinde, Pragati A.
AU - Chodankar, Nilesh R.
AU - Abdelkareem, Mohammad Ali
AU - Han, Young Kyu
AU - Olabi, Abdul Ghani
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/1/15
Y1 - 2022/1/15
N2 - The self-supported integrated structure of electrode consisting of heteroatoms is advantageous for high-performance energy storage applications. Herein, we developed heteroatomic Ni-Co4N nanoparticles laminated on highly conductive nitrogen-doped carbon (NC) matrix through in-situ nitridation for high energy and stable hybrid supercapacitor (HSC). The plenty of rendering electrochemically active sites, specifically, single-atom Ni, Co4N nanoparticles, and heteroatomic N-doped carbon matrix, and their several synergistic effects facilitate fast electron transfer and superior electrochemical performance. Benefiting from these merits, the resultant Ni-Co4N@NC electrode demonstrates robust electrochemical activity with high specific capacity of 397.5 mA h g−1, high rate capability of 72.4% and superior cycling stability over 10,000 cycles. The heteroatomic Ni-Co4N@NC electrode is further employed for the HSC cell beside with the activated carbon (AC) electrode, which establish the specific energy of 57.2 Wh kg−1 at a specific power of 843.8 W kg−1 and cyclic stability of 89.7% after 15,000 cycles. The present study highlights the utilization of heteroatomic self-supported metal nitrides for the high energy HSCs cell, paving the way to the expansion of highly efficient electrode materials for the future energy storage systems.
AB - The self-supported integrated structure of electrode consisting of heteroatoms is advantageous for high-performance energy storage applications. Herein, we developed heteroatomic Ni-Co4N nanoparticles laminated on highly conductive nitrogen-doped carbon (NC) matrix through in-situ nitridation for high energy and stable hybrid supercapacitor (HSC). The plenty of rendering electrochemically active sites, specifically, single-atom Ni, Co4N nanoparticles, and heteroatomic N-doped carbon matrix, and their several synergistic effects facilitate fast electron transfer and superior electrochemical performance. Benefiting from these merits, the resultant Ni-Co4N@NC electrode demonstrates robust electrochemical activity with high specific capacity of 397.5 mA h g−1, high rate capability of 72.4% and superior cycling stability over 10,000 cycles. The heteroatomic Ni-Co4N@NC electrode is further employed for the HSC cell beside with the activated carbon (AC) electrode, which establish the specific energy of 57.2 Wh kg−1 at a specific power of 843.8 W kg−1 and cyclic stability of 89.7% after 15,000 cycles. The present study highlights the utilization of heteroatomic self-supported metal nitrides for the high energy HSCs cell, paving the way to the expansion of highly efficient electrode materials for the future energy storage systems.
KW - Cobalt nitride
KW - Cycling stability
KW - Energy storage
KW - Hybrid supercapacitor
KW - Nitrogen-doped carbon
UR - http://www.scopus.com/inward/record.url?scp=85114186621&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2021.131888
DO - 10.1016/j.cej.2021.131888
M3 - Article
AN - SCOPUS:85114186621
SN - 1385-8947
VL - 428
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 131888
ER -