TY - JOUR
T1 - Overcoming Fill Factor Reduction in Ternary Polymer Solar Cells by Matching the Highest Occupied Molecular Orbital Energy Levels of Donor Polymers
AU - Lee, Jihoon
AU - Tamilavan, Vellaiappillai
AU - Rho, Kyung Hwan
AU - Keum, Sangha
AU - Park, Ki Hong
AU - Han, Daehee
AU - Jung, Yun Kyung
AU - Yang, Changduk
AU - Jin, Youngeup
AU - Jang, Jae Won
AU - Jeong, Jung Hyun
AU - Park, Sung Heum
N1 - Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2018/3/26
Y1 - 2018/3/26
N2 - Despite the potential of ternary polymer solar cells (PSCs) to improve photocurrents, ternary architecture is not widely utilized for PSCs because its application has been shown to reduce fill factor (FF). In this paper, a novel technique is reported for achieving highly efficient ternary PSCs without this characteristic sharp decrease in FF by matching the highest occupied molecular orbital (HOMO) energy levels of two donor polymers. Our ternary device—made from a blend of wide-bandgap poly[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b′]dithiophene-alt-2,5-dioctyl-4,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione) (PBDT-DPPD) polymer, narrow-bandgap poly[4,8-bis[5-(2-ethylhexyl)-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2- 6-diyl)] (PTB7-Th) polymer, and [6,6]-phenyl C70-butyric acid methyl ester (PC70BM)—exhibits a maximum power conversion efficiency of 10.42% with an open-circuit voltage of 0.80 V, a short-circuit current of 17.61 mA cm−2, and an FF of 0.74. In addition, this concept is extended to quaternary PSCs made by using three different donor polymers with similar HOMO levels. Interestingly, the quaternary PSCs also yield a good FF (≈0.70)—similar to those of corresponding binary PSCs. This study confirms that the HOMO levels of the polymers used on the photoactive layer of PSCs are a crucial determinant of a high FF.
AB - Despite the potential of ternary polymer solar cells (PSCs) to improve photocurrents, ternary architecture is not widely utilized for PSCs because its application has been shown to reduce fill factor (FF). In this paper, a novel technique is reported for achieving highly efficient ternary PSCs without this characteristic sharp decrease in FF by matching the highest occupied molecular orbital (HOMO) energy levels of two donor polymers. Our ternary device—made from a blend of wide-bandgap poly[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b′]dithiophene-alt-2,5-dioctyl-4,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione) (PBDT-DPPD) polymer, narrow-bandgap poly[4,8-bis[5-(2-ethylhexyl)-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2- 6-diyl)] (PTB7-Th) polymer, and [6,6]-phenyl C70-butyric acid methyl ester (PC70BM)—exhibits a maximum power conversion efficiency of 10.42% with an open-circuit voltage of 0.80 V, a short-circuit current of 17.61 mA cm−2, and an FF of 0.74. In addition, this concept is extended to quaternary PSCs made by using three different donor polymers with similar HOMO levels. Interestingly, the quaternary PSCs also yield a good FF (≈0.70)—similar to those of corresponding binary PSCs. This study confirms that the HOMO levels of the polymers used on the photoactive layer of PSCs are a crucial determinant of a high FF.
KW - efficient charge transport
KW - high fill factor
KW - ternary polymer solar cells
UR - http://www.scopus.com/inward/record.url?scp=85044455563&partnerID=8YFLogxK
U2 - 10.1002/aenm.201702251
DO - 10.1002/aenm.201702251
M3 - Article
AN - SCOPUS:85044455563
SN - 1614-6832
VL - 8
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 9
M1 - 1702251
ER -