TY - JOUR
T1 - Oxygen plasma-modified polycaprolactone nanofiber membrane activates the biological function in cell adhesion, proliferation, and migration through the phosphorylation of FAK and ERK1/2, enhancing bone regeneration
AU - Kim, Deogil
AU - Choi, Hyejong
AU - Lee, Min Ju
AU - Cho, Woong Jin
AU - Lee, Gun Woo
AU - Seo, Young Kwon
AU - Arai, Yoshie
AU - Lee, Soo Hong
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/11
Y1 - 2024/11
N2 - Bone defects present significant clinical challenges in orthopedics, orthodontics, and maxillofacial surgeries. Accelerated bone regeneration can be facilitated by incorporating mesenchymal stem cells, but limitations in cell survival and growth remain concerns for complete bone repair. Biomaterial-based membranes have been developed to form biocompatible, degradable, and mechanically stable barriers in guided bone regeneration processes. Polycaprolactone (PCL) is a biodegradable polymer widely used as a bone regenerative material because of its favorable mechanical properties. However, its inherent hydrophobicity limits cell adhesion and proliferation, which are necessary for effective bone regeneration. To address this, we fabricated cell-regulatory PCL nanofiber membranes using plasma treatment to enhance induced pluripotent stem cell-derived mesenchymal stem cells and osteoblast growth. The plasma treatment parameters (gas type, flow rate, power, and exposure time) were optimized to enhance PCL's surface hydrophilicity and protein adsorption properties while maintaining its mechanical integrity. The optimized oxygen plasma-modified PCL membrane demonstrated notable improvements in cell viability, adhesion, and proliferation. In addition, there was improved migration, regulated by cell surface markers and signaling proteins, of the induced pluripotent stem cell-derived mesenchymal stem cells and osteoblasts. In vivo studies in a rat calvarial defect model showed that the plasma-modified PCL membrane dramatically improved new bone formation, facilitating bone regeneration. These findings highlight the potential of plasma treatment of PCL nanofibers to produce effective cell-regulatory membranes for bone defect reconstruction.
AB - Bone defects present significant clinical challenges in orthopedics, orthodontics, and maxillofacial surgeries. Accelerated bone regeneration can be facilitated by incorporating mesenchymal stem cells, but limitations in cell survival and growth remain concerns for complete bone repair. Biomaterial-based membranes have been developed to form biocompatible, degradable, and mechanically stable barriers in guided bone regeneration processes. Polycaprolactone (PCL) is a biodegradable polymer widely used as a bone regenerative material because of its favorable mechanical properties. However, its inherent hydrophobicity limits cell adhesion and proliferation, which are necessary for effective bone regeneration. To address this, we fabricated cell-regulatory PCL nanofiber membranes using plasma treatment to enhance induced pluripotent stem cell-derived mesenchymal stem cells and osteoblast growth. The plasma treatment parameters (gas type, flow rate, power, and exposure time) were optimized to enhance PCL's surface hydrophilicity and protein adsorption properties while maintaining its mechanical integrity. The optimized oxygen plasma-modified PCL membrane demonstrated notable improvements in cell viability, adhesion, and proliferation. In addition, there was improved migration, regulated by cell surface markers and signaling proteins, of the induced pluripotent stem cell-derived mesenchymal stem cells and osteoblasts. In vivo studies in a rat calvarial defect model showed that the plasma-modified PCL membrane dramatically improved new bone formation, facilitating bone regeneration. These findings highlight the potential of plasma treatment of PCL nanofibers to produce effective cell-regulatory membranes for bone defect reconstruction.
KW - Bone defect
KW - Bone regeneration
KW - Cell-regulatory membrane
KW - Plasma treatment
KW - Polycaprolactone
KW - Surface modification
UR - http://www.scopus.com/inward/record.url?scp=85204568229&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2024.156003
DO - 10.1016/j.cej.2024.156003
M3 - Article
AN - SCOPUS:85204568229
SN - 1385-8947
VL - 499
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 156003
ER -