Parallel subspace projection beamforming for autonomous, passive sonar signal processing

Keonwook Kim, Alan D. George

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Adaptive techniques can be applied to improve performance of a beamformer in a cluttered environment. The sequential implementation of an adaptive beamformer, for many sensors and over a wide band of frequencies, presents a serious computational challenge. By coupling each transducer node with a microprocessor, in-situ parallel processing applied to an adaptive beamformer on a distributed system can glean advantages in execution speed, fault tolerance, scalability, and cost. In this paper, parallel algorithms for Subspace Projection Beamforming (SPB), using QR decomposition on distributed systems, are introduced for in-situ signal processing. Performance results from parallel and sequential algorithms are presented using a distributed system testbed comprised of a cluster of computers connected by a network. The execution times, parallel efficiencies, and memory requirements of each parallel algorithm are presented and analyzed. The results of these analyses demonstrate that parallel in-situ processing holds the potential to meet the needs of future advanced beamforming algorithms in a scalable fashion.

Original languageEnglish
Pages (from-to)55-74
Number of pages20
JournalJournal of Computational Acoustics
Volume11
Issue number1
DOIs
StatePublished - Mar 2003

Keywords

  • Cluster computing
  • Distributed and parallel processing
  • Subspace projection beamforming

Fingerprint

Dive into the research topics of 'Parallel subspace projection beamforming for autonomous, passive sonar signal processing'. Together they form a unique fingerprint.

Cite this