TY - GEN
T1 - Parameter-free HE-friendly Logistic Regression
AU - Byun, Junyoung
AU - Lee, Woojin
AU - Lee, Jaewook
N1 - Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Privacy in machine learning has been widely recognized as an essential ethical and legal issue, because the data used for machine learning may contain sensitive information. Homomorphic encryption has recently attracted attention as a key solution to preserve privacy in machine learning applications. However, current approaches on the training of encrypted machine learning have relied heavily on hyperparameter selection, which should be avoided owing to the extreme difficulty of conducting validation on encrypted data. In this study, we propose an effective privacy-preserving logistic regression method that is free from the approximation of the sigmoid function and hyperparameter selection. In our framework, a logistic regression model can be transformed into the corresponding ridge regression for the logit function. We provide a theoretical background for our framework by suggesting a new generalization error bound on the encrypted data. Experiments on various real-world data show that our framework achieves better classification results while reducing latency by ∼ 68%, compared to the previous models.
AB - Privacy in machine learning has been widely recognized as an essential ethical and legal issue, because the data used for machine learning may contain sensitive information. Homomorphic encryption has recently attracted attention as a key solution to preserve privacy in machine learning applications. However, current approaches on the training of encrypted machine learning have relied heavily on hyperparameter selection, which should be avoided owing to the extreme difficulty of conducting validation on encrypted data. In this study, we propose an effective privacy-preserving logistic regression method that is free from the approximation of the sigmoid function and hyperparameter selection. In our framework, a logistic regression model can be transformed into the corresponding ridge regression for the logit function. We provide a theoretical background for our framework by suggesting a new generalization error bound on the encrypted data. Experiments on various real-world data show that our framework achieves better classification results while reducing latency by ∼ 68%, compared to the previous models.
UR - http://www.scopus.com/inward/record.url?scp=85131869150&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85131869150
T3 - Advances in Neural Information Processing Systems
SP - 8457
EP - 8468
BT - Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
A2 - Ranzato, Marc'Aurelio
A2 - Beygelzimer, Alina
A2 - Dauphin, Yann
A2 - Liang, Percy S.
A2 - Wortman Vaughan, Jenn
PB - Neural information processing systems foundation
T2 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
Y2 - 6 December 2021 through 14 December 2021
ER -