Abstract
The manganese oxide graphene oxide (Mn3O4/rGO) composite heterojunction with copper oxide is useful for the production of an electrochemical supercapacitor. The graphene oxide and manganese oxide composite have been synthesized by adopting a method of co-precipitation. The composite of Mn3O4/rGO was synthesized with different concentrations of Mn3O4 and rGO. The structural, morphological, electrochemical and supercapacitive properties of Mn3O4/rGO composite have been examined. The electrochemical and supercapacitive properties have been studied with regard to different substrates. The Mn3O4/rGO composite was deposited on different substrates such as steel, copper and brass. The CuO/Mn3O4/rGO shows relatively better specific capacitance (856 F g-1) and better stability (82% retention after 2000 cycles) than other substrates used. The present work describes the development of cost-effective and high-performance CuO/Mn3O4/rGO-based nanomaterials for supercapacitors. The CuO/Mn3O4/rGO composite can be used as a flexible supercapacitor device.
Original language | English |
---|---|
Article number | 415403 |
Journal | Nanotechnology |
Volume | 31 |
Issue number | 41 |
DOIs | |
State | Published - 9 Oct 2020 |