Abstract
In this report, perovskite oxide-MnFeO3 nanoparticles embedded MXene sheets were prepared by hydrothermal approach for the effective water splitting and energy stowage uses. The prepared MXene@MnFeO3 hybrid nanocomposites exhibited outstanding 1077 F/g specific capacitance at a current density of 1 A g−1 and excellent cycling solidity (capacitance retention after the 3000 cycle is 96.5 %). In addition, an asymmetric capacitor delivered a ultimate specific energy of 114 Wh/kg at a specific power of 2117 W/kg. MXene@MnFeO3 hybrid catalyst required a credible overpotential of 235 mV to achieve the 10 mA cm−2 current density, along with the small Tafel slope of 41 mV dec−1 for OER in 1 M KOH and long-span 24 h stability. Our proposed strategy of perovskite oxide nanoparticles hybridized highly conductive MXene sheets would be suitable alternative as the potential electrode materials for the efficient energy storage/conversion application.
Original language | English |
---|---|
Article number | 110342 |
Journal | Journal of Energy Storage |
Volume | 81 |
DOIs | |
State | Published - 15 Mar 2024 |
Keywords
- Asymmetric
- Ferrite
- Hybrids
- MXene
- Oxygen evolution
- Supercap