Photo-mediated Biosynthesis of Silver Nanoparticles Using the Non-edible Accrescent Fruiting Calyx of Physalis peruviana L. Fruits and Investigation of its Radical Scavenging Potential and Cytotoxicity Activities

Jayanta Kumar Patra, Gitishree Das, Anuj Kumar, Abu Zar Ansari, Hojun Kim, Han Seung Shin

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

Silver nanoparticles (AgNPs) have been synthesized by various ways but the green technology methods using food waste materials has been accepted now a days for their cost effectiveness, environmental friendly and effective biomedical application. In the present study an attempt has been made to synthesize AgNPs by using the outer accrescent fruiting calyx of Physalis peruviana fruits, a food waste material under different light source condition, and to investigate their cytotoxic activity against the HepG2 cells as well as their antibacterial and radical scavenging potential. The surface morphology and elemental composition of the biosynthesized AgNPs were evaluated by scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray powder diffraction analysis. Fourier transform infrared spectroscopy of the sample extract and AgNPs was performed to determine the involvement of functional groups in the synthesis, capping, and stabilization process. The AgNPs showed promising cytotoxic activity against the HepG2 cells in a dose-dependent manner. The biosynthesized AgNPs also exhibited moderate antibacterial activity (8.14–10.22 mm inhibition zones) against two Gram-negative pathogenic bacteria with promising radical scavenging potential. Overall, the results highlight the effectiveness of the AgNPs for use in antibacterial wound dressing materials and other biomedical applications for the treatment of critical diseases such as cancer.

Original languageEnglish
Pages (from-to)116-125
Number of pages10
JournalJournal of Photochemistry and Photobiology B: Biology
Volume188
DOIs
StatePublished - Nov 2018

Keywords

  • Biomedical
  • Cytotoxicity
  • Green synthesis
  • HepG cells
  • Photo-mediated
  • Physalis peruviana
  • Silver nanoparticles

Fingerprint

Dive into the research topics of 'Photo-mediated Biosynthesis of Silver Nanoparticles Using the Non-edible Accrescent Fruiting Calyx of Physalis peruviana L. Fruits and Investigation of its Radical Scavenging Potential and Cytotoxicity Activities'. Together they form a unique fingerprint.

Cite this