Pre-ouzo effect derived fergusonite gadolinium ortho-niobate mesoporous nanospheroids for multimodal bioimaging and photodynamic therapy

Ganji Seeta Rama Raju, Eluri Pavitra, Hoomin Lee, Goli Nagaraju, Rengarajan Baskaran, Su Geun Yang, Cheol Hwan Kwak, Ganji Purnachandra Nagaraju, Yun Suk Huh, Young Kyu Han

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Rare-earth niobate compounds are excellent nonlinear optical materials. Unlike other niobate materials, gadolinium ortho-niobate (GdNbO4) is reported to be inert in the visible region. The synthesis of pure-phase GdNbO4 with a definite morphology suitable for biomedical applications is still a great challenge. In this study, a novel strategy is introduced to successfully facilitate the bioavailability of GdNbO4:Eu3+ luminescent material by harnessing the pre-ouzo effect during the synthesis of mesoporous GdNbO4:Eu3+ nanospheroids. Because of the materialization of GdNbO4 nanodomains, the mesoporous GdNbO4 nanospheroids exhibit paramagnetic behaviour and allows the strong broadband excitation between 300 and 500 nm, which permits NbO6 emissions to be obtained in the visible region, whereas Eu3+ activated mesoporous GdNbO4 nanospheroids produce an intense red emission under UV, near-UV and visible excitations. These mesoporous nanospheroids also demonstrate excellent cellular internalization for HCT116 and SW680 colon cancer cells and work in conjunction with optical and magnetic resonance imaging for the accurate diagnosis and prognosis of anatomical and physiological functions. The conjugation of chlorin e6 with mesoporous GdNbO4:Eu3+ nanospheroids leads to efficient photodynamic therapy (PDT) in cancer treatment. Ultimately, our approach represents an advance in the use of mesoporous GdNbO4:Eu3+ nanospheroids as multifunctional nanoprobes for multimodal imaging and PDT.

Original languageEnglish
Article number144584
JournalApplied Surface Science
Volume505
DOIs
StatePublished - 1 Mar 2020

Keywords

  • GdNbO nanospheroids
  • Multimodal bioimaging
  • Photodynamic therapy
  • Photoluminescence
  • Surface functionalization

Fingerprint

Dive into the research topics of 'Pre-ouzo effect derived fergusonite gadolinium ortho-niobate mesoporous nanospheroids for multimodal bioimaging and photodynamic therapy'. Together they form a unique fingerprint.

Cite this