PtCu Nanoparticle Catalyst for Electrocatalytic Glycerol Oxidation: How Does the PtCu Affect to Glycerol Oxidation Reaction Performance by Changing pH Conditions?

Lee Seul Oh, Jeonghyun Han, Eunho Lim, Won Bae Kim, Hyung Ju Kim

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

In this work, we show that finding and controlling optimum pH environments with Pt-based alloy catalysts can create high catalytic performances for electrocatalytic glycerol oxidation reaction (EGOR). Compared to a Pt/C catalyst, the PtCu/C alloy catalyst has higher reaction rate and turnover frequency (TOF) values by increasing the pH. Specifically, the reaction rate and TOF of the PtCu/C catalyst at pH 13 were 2.93 and 6.65 times higher than those of Pt/C, respectively. The PtCu/C catalyst also showed lower onset potential value and higher mass and specific activities than the Pt/C by increasing the pH. This indicates that the Cu in the PtCu alloy improves the catalytic activity for the EGOR in an OH group-rich environment. In the case of the PtCu/C catalyst at a high pH condition, the selectivities of tartronic acid and oxalic acid tended to increase as the selectivity of lactic acid decreased. This result means that the PtCu alloy follows primary alcohol oxidation pathways, which are more favorable in an OH group-rich environment than with only Pt. This study proposes that it is critical to optimize and control the reaction conditions for developing efficient EGOR catalysts.

Original languageEnglish
Article number892
JournalCatalysts
Volume13
Issue number5
DOIs
StatePublished - May 2023

Keywords

  • PtCu electrocatalyst
  • catalytic activity enhancement
  • electrocatalytic glycerol oxidation
  • pH condition change
  • reaction pathway control

Fingerprint

Dive into the research topics of 'PtCu Nanoparticle Catalyst for Electrocatalytic Glycerol Oxidation: How Does the PtCu Affect to Glycerol Oxidation Reaction Performance by Changing pH Conditions?'. Together they form a unique fingerprint.

Cite this