Quantitative analysis of polyhexamethylene guanidine (PHMG) oligomers via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with an ionic-liquid matrix

Donhee Yoon, Dongkun Lee, Jong Hyeon Lee, Sangwon Cha, Han Bin Oh

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

RATIONALE Quantifying polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) with a conventional crystalline matrix generally suffers from poor sample-to-sample or shot-to-shot reproducibility. An ionic-liquid matrix has been demonstrated to mitigate these reproducibility issues by providing a homogeneous sample surface, which is useful for quantifying polymers. In the present study, we evaluated the use of an ionic liquid matrix, i.e., 1-methylimidazolium α-cyano-4-hydroxycinnamate (1-MeIm-CHCA), to quantify polyhexamethylene guanidine (PHMG) samples that impose a critical health hazard when inhaled in the form of droplets. METHODS MALDI-TOF mass spectra were acquired for PHMG oligomers using a variety of ionic-liquid matrices including 1-MeIm-CHCA. Calibration curves were constructed by plotting the sum of the PHMG oligomer peak areas versus PHMG sample concentration with a variety of peptide internal standards. RESULTS Compared with the conventional crystalline matrix, the 1-MeIm-CHCA ionic-liquid matrix had much better reproducibility (lower standard deviations). Furthermore, by using an internal peptide standard, good linear calibration plots could be obtained over a range of PMHG concentrations of at least 4 orders of magnitude. CONCLUSIONS This study successfully demonstrated that PHMG samples can be quantitatively characterized by MALDI-TOFMS with an ionic-liquid matrix and an internal standard.

Original languageEnglish
Pages (from-to)213-219
Number of pages7
JournalRapid Communications in Mass Spectrometry
Volume29
Issue number2
DOIs
StatePublished - 30 Jan 2015

Fingerprint

Dive into the research topics of 'Quantitative analysis of polyhexamethylene guanidine (PHMG) oligomers via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with an ionic-liquid matrix'. Together they form a unique fingerprint.

Cite this