TY - JOUR
T1 - Rational synthesis of Na and S co-catalyst TiO2-based nanofibers
T2 - Presence of surface-layered TiS3 shell grains and sulfur-induced defects for efficient visible-light driven photocatalysis
AU - Ranjith, Kugalur Shanmugam
AU - Uyar, Tamer
N1 - Publisher Copyright:
© 2017 The Royal Society of Chemistry.
PY - 2017
Y1 - 2017
N2 - Surface-modified TiO2 nanofibers (NFs) with tunable visible-light photoactive catalysts were synthesised through electrospinning, followed by a sulfidation process. The utilization of sodium-based sulfidation precursors effectively led to the diffusion and integration of sulfur impurities into TiO2, modifying its band function. The optical band function of the sulfur-modified TiO2 NFs can be easily manipulated from 3.17 eV to 2.28 eV through surface modification, due to the creation of oxygen vacancies through the sulfidation process. Sulfidating TiO2 NFs introduces Ti-S-based nanograins and oxygen vacancies on the surface that favor the TiO2-TiS3 core-shell interface. These defect states extend the photocatalytic activity of the TiO2 NFs under visible irradiation and improve effective carrier separation and the production of reactive oxygen species. The surface oxygen vacancies and the Ti-S-based surface nanograins serve as charge traps and act as adsorption sites, improving the carrier mobility and avoiding charge recombination. The diffused S-modified TiO2 NFs exhibit a degradation rate of 0.0365 cm-1 for RhB dye solution, which is 4.8 times higher than that of pristine TiO2 NFs under visible irradiation. By benefiting from the sulfur states and oxygen vacancies, with a narrowed band gap of 2.3 eV, these nanofibers serve as suitable localized states for effective carrier separation.
AB - Surface-modified TiO2 nanofibers (NFs) with tunable visible-light photoactive catalysts were synthesised through electrospinning, followed by a sulfidation process. The utilization of sodium-based sulfidation precursors effectively led to the diffusion and integration of sulfur impurities into TiO2, modifying its band function. The optical band function of the sulfur-modified TiO2 NFs can be easily manipulated from 3.17 eV to 2.28 eV through surface modification, due to the creation of oxygen vacancies through the sulfidation process. Sulfidating TiO2 NFs introduces Ti-S-based nanograins and oxygen vacancies on the surface that favor the TiO2-TiS3 core-shell interface. These defect states extend the photocatalytic activity of the TiO2 NFs under visible irradiation and improve effective carrier separation and the production of reactive oxygen species. The surface oxygen vacancies and the Ti-S-based surface nanograins serve as charge traps and act as adsorption sites, improving the carrier mobility and avoiding charge recombination. The diffused S-modified TiO2 NFs exhibit a degradation rate of 0.0365 cm-1 for RhB dye solution, which is 4.8 times higher than that of pristine TiO2 NFs under visible irradiation. By benefiting from the sulfur states and oxygen vacancies, with a narrowed band gap of 2.3 eV, these nanofibers serve as suitable localized states for effective carrier separation.
UR - http://www.scopus.com/inward/record.url?scp=85023769083&partnerID=8YFLogxK
U2 - 10.1039/c7ta02839c
DO - 10.1039/c7ta02839c
M3 - Article
AN - SCOPUS:85023769083
SN - 2050-7488
VL - 5
SP - 14206
EP - 14219
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 27
ER -