TY - JOUR
T1 - Relationship between blood manganese levels and children's attention, cognition, behavior, and academic performance-A nationwide cross-sectional study
AU - Bhang, Soo Young
AU - Cho, Soo Churl
AU - Kim, Jae Won
AU - Hong, Yun Chul
AU - Shin, Min Sup
AU - Yoo, Hee Jeong
AU - Cho, In Hee
AU - Kim, Yeni
AU - Kim, Bung Nyun
PY - 2013/10
Y1 - 2013/10
N2 - Manganese (Mn) is neurotoxic at high concentrations. However, Mn is an essential element that can protect against oxidative damage; thus, extremely low levels of Mn might be harmful. Our aim was to examine whether either high or low environmental Mn exposure is related to academic and attention function development among school-aged children. This cross-sectional study included 1089 children 8-11 years of age living in five representative areas in South Korea. Blood Mn, blood lead, and urine cotinine were measured. We assessed IQ with the Wechsler Abbreviated Scale of Intelligence; attention with a computerized continuous performance test called the Attention-deficit/hyperactivity disorder (ADHD) Diagnostic System (ADS), the Korean version of the Stroop Color-Word Test, the Children's Color Trails Test (CCTT), and the ADHD Rating Scale; academic functions with the Learning Disability Evaluation Scale (LDES); and emotional and behavioral problems with the Korean version of the Child Behavior Checklist (CBCL). We further assessed the presence of ADHD using a highly structured diagnostic interview, the Diagnostic Interview Schedule for Children Version IV (DISC-IV).The median blood concentration of Mn was 14.14 μg/L. We observed a nonlinear association between the CCTT2 completion time and the CPT commission error (F=3.14, p=0.03 and F=4.05, p=0.01, respectively). We divided the data into three groups: lower (<8.154 μg/L), and upper 5th percentile (>21.453 μg/L) and middle 90th percentile to determine whether a lack or overload of Mn could cause adverse effects. After adjusting for urine cotinine, blood lead, children's IQ, and other potential confounders, the high Mn group showed lower scores in thinking (B=-0.83, p=0.006), reading (B=-0.93, p=0.004), calculations (B=-0.72, p=0.005), and LQ (B=-4.06, p=0.006) in the LDES and a higher commission error in the CPT (B=8.02, p=0.048). The low Mn group showed lower color scores in the Stroop test (B=-3.24, p=0.040).We found that excess Mn in children is associated with lower scores of thinking, reading, calculation, and LQ in the LDES and higher scores of commission error in the ADS test. In contrast, lower Mn in children is associated with lower color scores in the Stroop test. The findings of this cross-sectional study suggest that excess exposure or deficiency of Mn can cause harmful effects in children. •Either high or low Mn level might relate to neurocognitive function in children.
AB - Manganese (Mn) is neurotoxic at high concentrations. However, Mn is an essential element that can protect against oxidative damage; thus, extremely low levels of Mn might be harmful. Our aim was to examine whether either high or low environmental Mn exposure is related to academic and attention function development among school-aged children. This cross-sectional study included 1089 children 8-11 years of age living in five representative areas in South Korea. Blood Mn, blood lead, and urine cotinine were measured. We assessed IQ with the Wechsler Abbreviated Scale of Intelligence; attention with a computerized continuous performance test called the Attention-deficit/hyperactivity disorder (ADHD) Diagnostic System (ADS), the Korean version of the Stroop Color-Word Test, the Children's Color Trails Test (CCTT), and the ADHD Rating Scale; academic functions with the Learning Disability Evaluation Scale (LDES); and emotional and behavioral problems with the Korean version of the Child Behavior Checklist (CBCL). We further assessed the presence of ADHD using a highly structured diagnostic interview, the Diagnostic Interview Schedule for Children Version IV (DISC-IV).The median blood concentration of Mn was 14.14 μg/L. We observed a nonlinear association between the CCTT2 completion time and the CPT commission error (F=3.14, p=0.03 and F=4.05, p=0.01, respectively). We divided the data into three groups: lower (<8.154 μg/L), and upper 5th percentile (>21.453 μg/L) and middle 90th percentile to determine whether a lack or overload of Mn could cause adverse effects. After adjusting for urine cotinine, blood lead, children's IQ, and other potential confounders, the high Mn group showed lower scores in thinking (B=-0.83, p=0.006), reading (B=-0.93, p=0.004), calculations (B=-0.72, p=0.005), and LQ (B=-4.06, p=0.006) in the LDES and a higher commission error in the CPT (B=8.02, p=0.048). The low Mn group showed lower color scores in the Stroop test (B=-3.24, p=0.040).We found that excess Mn in children is associated with lower scores of thinking, reading, calculation, and LQ in the LDES and higher scores of commission error in the ADS test. In contrast, lower Mn in children is associated with lower color scores in the Stroop test. The findings of this cross-sectional study suggest that excess exposure or deficiency of Mn can cause harmful effects in children. •Either high or low Mn level might relate to neurocognitive function in children.
KW - Academic function
KW - Attention
KW - Children
KW - Manganese
UR - http://www.scopus.com/inward/record.url?scp=84885860053&partnerID=8YFLogxK
U2 - 10.1016/j.envres.2013.05.006
DO - 10.1016/j.envres.2013.05.006
M3 - Article
C2 - 23790803
AN - SCOPUS:84885860053
SN - 0013-9351
VL - 126
SP - 9
EP - 16
JO - Environmental Research
JF - Environmental Research
ER -