Review on the Polymeric and Chelate Gel Precursor for Li-Ion Battery Cathode Material Synthesis

Mobinul Islam, Md Shahriar Ahmed, Muhammad Faizan, Basit Ali, Md Murshed Bhuyan, Gazi A.K.M.Rafiqul Bari, Kyung Wan Nam

Research output: Contribution to journalReview articlepeer-review

4 Scopus citations

Abstract

The rapid design of advanced materials depends on synthesis parameters and design. A wide range of materials can be synthesized using precursor reactions based on chelated gel and organic polymeric gel pathways. The desire to develop high-performance lithium-ion rechargeable batteries has motivated decades of research on the synthesis of battery active material particles with precise control of composition, phase-purity, and morphology. Among the most common methods reported in the literature to prepare precursors for lithium-ion battery active materials, sol-gel is characterized by simplicity, homogeneous mixing, and tuning of the particle shape. The chelate gel and organic polymeric gel precursor-based sol-gel method is efficient to promote desirable reaction conditions. Both precursor routes are commonly used to synthesize lithium-ion battery cathode active materials from raw materials such as inorganic salts in aqueous solutions or organic solvents. The purpose of this review is to discuss synthesis procedure and summarize the progress that has been made in producing crystalline particles of tunable and complex morphologies by sol-gel synthesis that can be used as active materials for lithium-ion batteries.

Original languageEnglish
Article number586
JournalGels
Volume10
Issue number9
DOIs
StatePublished - Sep 2024

Keywords

  • cathode material
  • chelating agent
  • gel precursor
  • lithium-ion battery
  • metal-citrate gel
  • polymeric gel
  • sol-gel

Fingerprint

Dive into the research topics of 'Review on the Polymeric and Chelate Gel Precursor for Li-Ion Battery Cathode Material Synthesis'. Together they form a unique fingerprint.

Cite this