Robust fuzzy neural network sliding mode control scheme for IPMSM drives

V. Q. Leu, F. Mwasilu, H. H. Choi, J. Lee, J. W. Jung

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

This article proposes a robust fuzzy neural network sliding mode control (FNNSMC) law for interior permanent magnet synchronous motor (IPMSM) drives. The proposed control strategy not only guarantees accurate and fast command speed tracking but also it ensures the robustness to system uncertainties and sudden speed and load changes. The proposed speed controller encompasses three control terms: a decoupling control term which compensates for nonlinear coupling factors using nominal parameters, a fuzzy neural network (FNN) control term which approximates the ideal control components and a sliding mode control (SMC) term which is proposed to compensate for the errors of that approximation. Next, an online FNN training methodology, which is developed using the Lyapunov stability theorem and the gradient descent method, is proposed to enhance the learning capability of the FNN. Moreover, the maximum torque per ampere (MTPA) control is incorporated to maximise the torque generation in the constant torque region and increase the efficiency of the IPMSM drives. To verify the effectiveness of the proposed robust FNNSMC, simulations and experiments are performed by using MATLAB/Simulink platform and a TI TMS320F28335 DSP on a prototype IPMSM drive setup, respectively. Finally, the simulated and experimental results indicate that the proposed design scheme can achieve much better control performances (e.g. more rapid transient response and smaller steady-state error) when compared to the conventional SMC method, especially in the case that there exist system uncertainties.

Original languageEnglish
Pages (from-to)919-938
Number of pages20
JournalInternational Journal of Electronics
Volume101
Issue number7
DOIs
StatePublished - 3 Jul 2014

Keywords

  • fuzzy neural network (FNN)

Fingerprint

Dive into the research topics of 'Robust fuzzy neural network sliding mode control scheme for IPMSM drives'. Together they form a unique fingerprint.

Cite this