Satellite Data-Driven Deep Learning Approach for Monitoring Groundwater Drought in South Korea

Jae Young Seo, Sang Il Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Due to the effect of climate change on the hydrological cycle process, the severity and frequency of drought have increased. Typically, drought begins with meteorological drought, after which it propagates to agricultural and hydrological drought. Thus, it is essential to investigate the process involved in the drought propagation from meteorological to groundwater drought. In this study, we investigated groundwater drought by calculating the standardized groundwater level index (SGI) using predicted groundwater storage changes (GWSC) based on satellite data-driven deep learning models. The GWSC was predicted using two deep learning models (the convolution neural network-long short term memory (CNN-LSTM) and LSTM), and the results were validated using in situ observation data. In addition, the SGI was compared to meteorological, agricultural, and hydrological drought indices based on remote sensed data, and the drought propagation was analyzed. This study revealed the potential of satellite data-driven deep learning models for assessing groundwater droughts, which is important for the development of multi-scale drought monitoring systems.

Original languageEnglish
Title of host publicationIGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6312-6315
Number of pages4
ISBN (Electronic)9781665427920
DOIs
StatePublished - 2022
Event2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 - Kuala Lumpur, Malaysia
Duration: 17 Jul 202222 Jul 2022

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2022-July

Conference

Conference2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022
Country/TerritoryMalaysia
CityKuala Lumpur
Period17/07/2222/07/22

Keywords

  • Deep learning
  • Drought propagation
  • Groundwater drought
  • SGI

Fingerprint

Dive into the research topics of 'Satellite Data-Driven Deep Learning Approach for Monitoring Groundwater Drought in South Korea'. Together they form a unique fingerprint.

Cite this