TY - JOUR
T1 - Scaffold Repurposing Reveals New Nanomolar Phosphodiesterase Type 5 (PDE5) Inhibitors Based on Pyridopyrazinone Scaffold
T2 - Investigation of In Vitro and In Silico Properties
AU - Amin, Kamelia M.
AU - El-Badry, Ossama M.
AU - Abdel Rahman, Doaa E.
AU - Abdellattif, Magda H.
AU - Abourehab, Mohammed A.S.
AU - El-Maghrabey, Mahmoud H.
AU - Elsaid, Fahmy G.
AU - El Hamd, Mohamed A.
AU - Elkamhawy, Ahmed
AU - Ammar, Usama M.
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/9
Y1 - 2022/9
N2 - Inhibition of PDE5 results in elevation of cGMP leading to vascular relaxation and reduction in the systemic blood pressure. Therefore, PDE5 inhibitors are used as antihypertensive and antianginal agents in addition to their major use as male erectile dysfunction treatments. Previously, we developed a novel series of 34 pyridopyrazinone derivatives as anticancer agents (series A–H). Herein, a multi-step in silico approach was preliminary conducted to evaluate the predicted PDE5 inhibitory activity, followed by an in vitro biological evaluation over the enzymatic level and a detailed SAR study. The designed 2D-QSAR model which was carried out to predict the IC50 of the tested compounds revealed series B, D, E and G with nanomolar range of IC50 values (6.00–81.56 nM). A further docking simulation model was performed to investigate the binding modes within the active site of PDE5. Interestingly, most of the tested compounds showed almost the same binding modes of that of reported PDE5 inhibitors. To validate the in silico results, an in vitro enzymatic assay over PDE5 enzyme was performed for a number of the promising candidates with different substitutions. Both series E and G exhibited a potent inhibitory activity (IC50 = 18.13–41.41 nM). Compound 11b (series G, oxadiazole-based derivatives with terminal 4-NO2 substituted phenyl ring and rigid linker) was the most potent analogue with IC50 value of 18.13 nM. Structure–activity relationship (SAR) data attained for various substitutions were rationalized. Furthermore, a molecular dynamic simulation gave insights into the inhibitory activity of the most active compound (11b). Accordingly, this report presents a successful scaffold repurposing approach that reveals compound 11b as a highly potent nanomolar PDE5 inhibitor worthy of further investigation.
AB - Inhibition of PDE5 results in elevation of cGMP leading to vascular relaxation and reduction in the systemic blood pressure. Therefore, PDE5 inhibitors are used as antihypertensive and antianginal agents in addition to their major use as male erectile dysfunction treatments. Previously, we developed a novel series of 34 pyridopyrazinone derivatives as anticancer agents (series A–H). Herein, a multi-step in silico approach was preliminary conducted to evaluate the predicted PDE5 inhibitory activity, followed by an in vitro biological evaluation over the enzymatic level and a detailed SAR study. The designed 2D-QSAR model which was carried out to predict the IC50 of the tested compounds revealed series B, D, E and G with nanomolar range of IC50 values (6.00–81.56 nM). A further docking simulation model was performed to investigate the binding modes within the active site of PDE5. Interestingly, most of the tested compounds showed almost the same binding modes of that of reported PDE5 inhibitors. To validate the in silico results, an in vitro enzymatic assay over PDE5 enzyme was performed for a number of the promising candidates with different substitutions. Both series E and G exhibited a potent inhibitory activity (IC50 = 18.13–41.41 nM). Compound 11b (series G, oxadiazole-based derivatives with terminal 4-NO2 substituted phenyl ring and rigid linker) was the most potent analogue with IC50 value of 18.13 nM. Structure–activity relationship (SAR) data attained for various substitutions were rationalized. Furthermore, a molecular dynamic simulation gave insights into the inhibitory activity of the most active compound (11b). Accordingly, this report presents a successful scaffold repurposing approach that reveals compound 11b as a highly potent nanomolar PDE5 inhibitor worthy of further investigation.
KW - 2D-QSAR analysis
KW - in vitro enzyme assay
KW - molecular docking
KW - molecular dynamic simulation
KW - PDE5 inhibitors
KW - pyridopyrazinone derivatives
KW - scaffold repurposing
UR - http://www.scopus.com/inward/record.url?scp=85138649878&partnerID=8YFLogxK
U2 - 10.3390/pharmaceutics14091954
DO - 10.3390/pharmaceutics14091954
M3 - Article
AN - SCOPUS:85138649878
SN - 1999-4923
VL - 14
JO - Pharmaceutics
JF - Pharmaceutics
IS - 9
M1 - 1954
ER -