TY - JOUR
T1 - Selenium enriched hybrid metal chalcogenides with enhanced redox kinetics for high-energy density supercapacitors
AU - Manikandan, Ramu
AU - Justin Raj, C.
AU - Nagaraju, Goli
AU - Velayutham, Rajavel
AU - Moulton, Simon E.
AU - Puigdollers, J.
AU - Chul Kim, Byung
N1 - Publisher Copyright:
© 2021
PY - 2021/6/15
Y1 - 2021/6/15
N2 - Rational design and synergistic interactions between the electrode and electroactive materials have a huge impact on elevating the energy storage performance of supercapacitor devices. Herein, selenium enriched hybrid NiSe2@Fe3Se4 (NFS) nanocomposites have been facilely deposited on Ni-foam using chemical bath deposition (CBD) technique. The NiSe2@Fe3Se4 hybrid composites exhibited better electrochemical performance than that of monometallic selenides (NiSe2 and Fe3Se4), which can be attributed to the synergy effect and improved conductivity of polymetallic ions over the Ni foam substrate. The effect of NFS deposition time on Ni foam was studied and it greatly influences the morphological and electrochemical performances. Specifically, the NFS deposited for 36 h (NFS@36 h) provides a maximum areal capacity of 6.05 C cm−2 at 6 mA cm−2, which is almost four-fold higher than that of pure NiSe2 (0.168 C cm−2) and Fe3Se4 (1.46 C cm−2). Furthermore, a hybrid supercapacitor (HSC) is assembled utilizing the NFS@36 h as a positive electrode and biomass derived O, N enriched activated carbon as a negative electrode with an aqueous electrolyte. With a high-mass loading of 21.5 mg cm−2, the device demonstrates superior specific energy of 52 W h kg−1 at 398 W kg−1 specific power and even maintained 19 W h kg−1 at a maximum specific 8000 W kg−1. Furthermore, the device exhibited excellent cycling durability with ~ 92% of specific capacitance retention for 10,000 charge/discharge cycles at 5 A g−1. Besides, the HSCs have been successfully illuminated several light emitting diodes (LEDs) and portable displays demonstrating superior energy storage performance.
AB - Rational design and synergistic interactions between the electrode and electroactive materials have a huge impact on elevating the energy storage performance of supercapacitor devices. Herein, selenium enriched hybrid NiSe2@Fe3Se4 (NFS) nanocomposites have been facilely deposited on Ni-foam using chemical bath deposition (CBD) technique. The NiSe2@Fe3Se4 hybrid composites exhibited better electrochemical performance than that of monometallic selenides (NiSe2 and Fe3Se4), which can be attributed to the synergy effect and improved conductivity of polymetallic ions over the Ni foam substrate. The effect of NFS deposition time on Ni foam was studied and it greatly influences the morphological and electrochemical performances. Specifically, the NFS deposited for 36 h (NFS@36 h) provides a maximum areal capacity of 6.05 C cm−2 at 6 mA cm−2, which is almost four-fold higher than that of pure NiSe2 (0.168 C cm−2) and Fe3Se4 (1.46 C cm−2). Furthermore, a hybrid supercapacitor (HSC) is assembled utilizing the NFS@36 h as a positive electrode and biomass derived O, N enriched activated carbon as a negative electrode with an aqueous electrolyte. With a high-mass loading of 21.5 mg cm−2, the device demonstrates superior specific energy of 52 W h kg−1 at 398 W kg−1 specific power and even maintained 19 W h kg−1 at a maximum specific 8000 W kg−1. Furthermore, the device exhibited excellent cycling durability with ~ 92% of specific capacitance retention for 10,000 charge/discharge cycles at 5 A g−1. Besides, the HSCs have been successfully illuminated several light emitting diodes (LEDs) and portable displays demonstrating superior energy storage performance.
KW - Battery-type material
KW - CBD method
KW - Heteroatom rich activated carbon
KW - Hybrid supercapacitor
KW - Ternary chalcogenides
UR - http://www.scopus.com/inward/record.url?scp=85101425215&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2021.128924
DO - 10.1016/j.cej.2021.128924
M3 - Article
AN - SCOPUS:85101425215
SN - 1385-8947
VL - 414
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 128924
ER -