Semantic segmentation by multi-scale feature extraction based on grouped dilated convolution module

Dong Seop Kim, Yu Hwan Kim, Kang Ryoung Park

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Existing studies have shown that effective extraction of multi-scale information is a crucial factor directly related to the increase in performance of semantic segmentation. Accordingly, various methods for extracting multi-scale information have been developed. However, these methods face problems in that they require additional calculations and vast computing resources. To address these problems, this study proposes a grouped dilated convolution module that combines existing grouped convolutions and atrous spatial pyramid pooling techniques. The proposed method can learn multi-scale features more simply and effectively than existing methods. Because each convolution group has different dilations in the proposed model, they have receptive fields of different sizes and can learn features corresponding to these receptive fields. As a result, multi-scale context can be easily extracted. Moreover, optimal hyper-parameters are obtained from an in-depth analysis, and excellent segmentation performance is derived. To evaluate the proposed method, open databases of the Cambridge Driving Labeled Video Database (CamVid) and the Stanford Background Dataset (SBD) are utilized. The experimental results indicate that the proposed method shows a mean intersection over union of 73.15% based on the CamVid dataset and 72.81% based on the SBD, thereby exhibiting excellent performance compared to other state-of-the-art methods.

Original languageEnglish
Article number947
JournalMathematics
Volume9
Issue number9
DOIs
StatePublished - 1 May 2021

Keywords

  • Grouped dilated convolution module
  • Multi-scale context
  • Pixel-level classification
  • Semantic segmentation

Fingerprint

Dive into the research topics of 'Semantic segmentation by multi-scale feature extraction based on grouped dilated convolution module'. Together they form a unique fingerprint.

Cite this