Abstract
This study aims at introducing a modeling and simulation approach for a green roof system which can reduce energy cost of a building exposed to high temperatures throughout the summer season. First, to understand thermal impact of a green roof system on a building surface, a field-based study has been conducted in Commerce, Texas, U.S., where the average maximum temperature in summer is 104◦ F (40◦ C). Two types of analyses were conducted: (1) comparison of temperature between different plant type via Analysis of variance (ANOVA) and (2) polynomial regression analysis to develop thermal impact estimation model based on air temperature and presence of a green roof. In addition, an agent-based simulation (ABS) model was developed via AnyLogic® University 8.6.0 simulation software, Chicago, IL, U.S., in order to accurately estimate energy cost and benefits of a building with a photovoltaic-green roof system. The proposed approach was applied to estimate energy reduction cost of the Keith D. McFarland Science Building at Texas A&M University, Commerce, Texas (33.2410◦ N, 95.9104◦ W). As a result, the proposed approach was able to save $740,325.44 in energy cost of a heating, ventilation, and air conditioning (HAVC) system in the subject building. The proposed approach will contribute to the implementation of a sustainable building and urban agriculture.
Original language | English |
---|---|
Article number | 5443 |
Journal | Energies |
Volume | 14 |
Issue number | 17 |
DOIs | |
State | Published - Sep 2021 |
Keywords
- Condensate water
- Green roof
- Photovoltaic
- Simulation
- Sustainability
- Urban agriculture