Abstract
The integration of ZnO nanowire-based energy harvesting devices into flexible polyesters or clothes would have a significant effect on the energy harvesting building block for harvesting the mechanical energy from human motions. Moreover, the demonstration of high output power via a doping process opens an important method for enhancing the output power. Here, we report solution-based synthesis of Ag-doped ZnO nanowires on flexible polyester substrates without using any high temperature annealing processes. Along with the structural and optical characteristics of the Ag-doped ZnO nanowires, we demonstrate the efficient features of Ag-doped nanogenerators through the measurement of a sound-driven piezoelectric energy device with an output power of 0.5 μW, which is nearly 2.9 times that of a nanogenerator with un-doped ZnO NWs. This finding could provide the possibility of high output nanogenerators for practical applications in future portable/wearable personal displays and motion sensors.
Original language | English |
---|---|
Pages (from-to) | 9609-9614 |
Number of pages | 6 |
Journal | Nanoscale |
Volume | 5 |
Issue number | 20 |
DOIs | |
State | Published - 21 Oct 2013 |