TY - JOUR
T1 - Solvent-regulated fluorimetric differentiation of Al3+and Zn2+using an AIE-active single sensor
AU - Das, Bhriguram
AU - Dolai, Malay
AU - Dhara, Anamika
AU - Ghosh, Avijit
AU - Mabhai, Subhabrata
AU - Misra, Ajay
AU - Dey, Satyajit
AU - Jana, Atanu
N1 - Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/2/25
Y1 - 2021/2/25
N2 - The absence of d-orbital electrons or presence of full-filled d-orbital electrons in metal ions is a well-known Achilles' heel problem for the detection of these metal ions by a simple UV-visible study. For this reason, detection of metal ions such as Al3+ with no d-orbital electrons or Zn2+ with filled d-orbital electrons is a challenging task. Herein, we report a 2-naphthol-based fluorescent probe [1-((E)- ((E)-(5-bromo-2-hydroxybenzylidene)hydrazono)methyl)naphthalen-2-ol] (H2L) that has been used to sense and discriminate Al3+ and Zn2+ via solvent regulation. The probe exhibits excellent selectivity and swift sensitivity toward Al3+ in MeOH-water (9:1, v/v) and toward Zn2+ in dimethyl sulfoxide (DMSO)-water (9:1, v/v) among various metal ions. The respective detection limit is found to be 9.78 and 3.65 μM. The sensing mechanism is attributed to multiple processes, viz., the inhibition of photo-induced electron transfer (PET) along with the introduction of chelation-enhanced emission (CHEF) and excited-state intramolecular proton transfer (ESIPT) inhibition, which are experimentally well verified by UV-vis absorption spectroscopy, emission spectroscopy, and NMR spectroscopy. The probe shows aggregation-induced emissive (AIE) response in ≥70% aqueous media as well as in the solid state. The experimental results are well corroborated by time-resolved photoluminescence (TRPL) and density functional theory (DFT) calculations. An advanced-level OR-AND-NOT logic gate has been constructed from a different chemical combinational input and emission output. The reversible recognition of both Al3+ in MeOH-water (9:1, v/v) and Zn2+ in DMSO-water (9:1, v/v) is also ascertained in the presence of Na2EDTA, enabling the construction of a molecular memory device. The probe H2L also detects intracellular Al3+/Zn2+ ions in Hela cells. Altogether, our fundamental findings will pave the way for designing and synthesis of unique chemosensors that could be used for cell imaging studies as well as constructing molecular logic gates.
AB - The absence of d-orbital electrons or presence of full-filled d-orbital electrons in metal ions is a well-known Achilles' heel problem for the detection of these metal ions by a simple UV-visible study. For this reason, detection of metal ions such as Al3+ with no d-orbital electrons or Zn2+ with filled d-orbital electrons is a challenging task. Herein, we report a 2-naphthol-based fluorescent probe [1-((E)- ((E)-(5-bromo-2-hydroxybenzylidene)hydrazono)methyl)naphthalen-2-ol] (H2L) that has been used to sense and discriminate Al3+ and Zn2+ via solvent regulation. The probe exhibits excellent selectivity and swift sensitivity toward Al3+ in MeOH-water (9:1, v/v) and toward Zn2+ in dimethyl sulfoxide (DMSO)-water (9:1, v/v) among various metal ions. The respective detection limit is found to be 9.78 and 3.65 μM. The sensing mechanism is attributed to multiple processes, viz., the inhibition of photo-induced electron transfer (PET) along with the introduction of chelation-enhanced emission (CHEF) and excited-state intramolecular proton transfer (ESIPT) inhibition, which are experimentally well verified by UV-vis absorption spectroscopy, emission spectroscopy, and NMR spectroscopy. The probe shows aggregation-induced emissive (AIE) response in ≥70% aqueous media as well as in the solid state. The experimental results are well corroborated by time-resolved photoluminescence (TRPL) and density functional theory (DFT) calculations. An advanced-level OR-AND-NOT logic gate has been constructed from a different chemical combinational input and emission output. The reversible recognition of both Al3+ in MeOH-water (9:1, v/v) and Zn2+ in DMSO-water (9:1, v/v) is also ascertained in the presence of Na2EDTA, enabling the construction of a molecular memory device. The probe H2L also detects intracellular Al3+/Zn2+ ions in Hela cells. Altogether, our fundamental findings will pave the way for designing and synthesis of unique chemosensors that could be used for cell imaging studies as well as constructing molecular logic gates.
UR - http://www.scopus.com/inward/record.url?scp=85101647661&partnerID=8YFLogxK
U2 - 10.1021/acs.jpca.0c10518
DO - 10.1021/acs.jpca.0c10518
M3 - Article
C2 - 33565874
AN - SCOPUS:85101647661
SN - 1089-5639
VL - 125
SP - 1490
EP - 1504
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 7
ER -