Stable and Efficient Perovskite Solar Cells by Controlling the Crystal Growth via Introduction of Plasmonic TiN Nanoparticles

Oleksii Omelianovych, Sanjay Sandhu, Mensah Appiagyei Ewusi, Liudmila Larina, Byeonggwan Kim, Ba Thong Trinh, Adam Szaniel, Ilsun Yoon, Jae Joon Lee, Ho Suk Choi

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Incorporating noble-metal plasmonic nanoparticles (NPs) enhances the optoelectronic properties of perovskite solar cells (PSCs) but at a higher cost. In this work, the overlooked potential of refractory plasmonic materials is highlighted as a cost-effective alternative additive in PSC research. This investigation aims to stimulate interest in this area by showcasing the theoretical and practical impacts of TiN plasmonic NPs when integrated into PSCs. TiN plasmonic NPs present a cost-effective yet underexplored option. This study explores the impact of TiN NPs on PSCs through theoretical and experimental approaches. Finite-difference time-domain (FDTD) optical simulations and empirical data indicate that TiN NPs increase absorption and reduce reflectance in PSCs, driven by surface plasmon resonance and the significant growth of perovskite grains from 450 to 1400 nm. These NPs also regulate the perovskite crystallization rate by adsorbing DMF/DMSO, fostering larger grain formation. Improved band alignment and decreased trap states enhance charge transport and diminish non-radiative recombination losses. As a result, PSC efficiency with optimal TiN NP concentration increased from 19.07% to 21.37%. Additionally, TiN-enhanced PSCs display better stability, retaining 98.1% of their original PCE after 31 days under ambient conditions.

Original languageEnglish
Article number2407343
JournalAdvanced Functional Materials
Volume34
Issue number44
DOIs
StatePublished - 29 Oct 2024

Keywords

  • TiN nanoparticles
  • crystallization control
  • non-radiative recombination
  • perovskite solar cells
  • surface plasmon resonance

Fingerprint

Dive into the research topics of 'Stable and Efficient Perovskite Solar Cells by Controlling the Crystal Growth via Introduction of Plasmonic TiN Nanoparticles'. Together they form a unique fingerprint.

Cite this