Abstract
Static and low frequency noise (LFN) characterizations in two-dimensional (2D) N-type random network thin film transistors (RN-TFTs) based on single-walled carbon nanotubes were presented. For the electrical parameter extraction, the Y-function method was used to suppress the series resistance (Rsd) influence. The gate-to-channel capacitance (Cgc) was directly measured by the split capacitance-to-voltage method and compared to 2D metal-plate capacitance model (C2D). In addition, to account for the percolation-dominated 2D RN-TFTs, a numerical percolation simulation was performed. LFN measurements were also carried out and the results were well interpreted by the carrier number and correlated mobility fluctuation model. Finally, one-dimensional (1D) cylindrical analytical capacitance based model (C1D) was suggested and applied to provide better consistency between all electrical parameters based on experimental and simulation results.
Original language | English |
---|---|
Article number | 154503 |
Journal | Journal of Applied Physics |
Volume | 114 |
Issue number | 15 |
DOIs | |
State | Published - 21 Oct 2013 |