Abstract
Structural changes and their relationship with thermal stability of charged Li0.33Ni1/3Co1/3Mn1/3O2 cathode samples have been studied using time-resolved X-ray diffraction (TR-XRD) in a wide temperature from 25 to 600 °C with and without the presence of electrolyte in comparison with Li0.27Ni0.8Co0.15Al0.05O2 cathodes. Unique phase transition behavior during heating is found for the Li0.33Ni1/3Co1/3Mn1/3O2 cathode samples: when no electrolyte is present, the initial layered structure changes first to a LiM2O4-type spinel, and then to a M3O4-type spinel and remains in this structure up to 600 °C. For the Li0.33Ni1/3Co1/3Mn1/3O2 cathode sample with electrolyte, additional phase transition from the M3O4-type spinel to the MO-type rock salt phase takes place from about 400 to 441 °C together with the formation of metallic phase at about 460 °C. The major difference between this type of phase transitions and that for Li0.27Ni0.8Co0.15Al0.05O2 in the presence of electrolyte is the delayed phase transition from the spinel-type to the rock salt-type phase by stretching the temperature range of spinel phases from about 20 to 140 °C. This unique behavior is considered as the key factor of the better thermal stability of the Li1-xNi1/3Co1/3Mn1/3O2 cathode materials.
Original language | English |
---|---|
Pages (from-to) | 515-518 |
Number of pages | 4 |
Journal | Journal of Power Sources |
Volume | 189 |
Issue number | 1 |
DOIs | |
State | Published - 1 Apr 2009 |
Keywords
- LiNiCoAlO
- LiNiCoMnO
- Lithium rechargeable batteries
- Time resolved X-ray diffraction