TY - JOUR
T1 - Structural Disorder of a Layered Lithium Manganese Oxide Cathode Paving a Reversible Phase Transition Route toward Its Theoretical Capacity
AU - Lee, Suwon
AU - Kang, Seongkoo
AU - Choi, Youngju
AU - Kim, Jihyun
AU - Yang, Junghoon
AU - Han, Daseul
AU - Nam, Kyung Wan
AU - Borkiewicz, Olaf J.
AU - Zhang, Jiliang
AU - Kang, Yong Mook
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2024
Y1 - 2024
N2 - Layered lithium manganese oxides suffer from irreversible phase transitions induced by Mn migration and/or dissolution associated with the Jahn-Teller effect (JTE) of Mn3+, leading to inevitable capacity fading during cycling. The popular doping strategy of oxidizing Mn3+ to Mn4+ to relieve the JTE cannot completely eliminate the detrimental structural collapse from the cooperative JTE. Therefore, they are considered to be impractical for commercial use as cathode materials. Here, we demonstrate a layered lithium manganese oxide that can be charged and discharged without any serious structural collapse using metastable Li-birnessite with controlled structural disorder. Although Li-birnessite is thermodynamically unstable under ambient conditions, Li ion exchange into Na-birnessite followed by an optimal dehydration resulted in a disordered Li-birnessite. The control over crystal water in the interlayer provides intriguing short-range order therein, which can help to suppress parasitic Mn migration and dissolution, thereby ensuring a reversible electrochemical cycling. The Mn redox behavior and local structure change of the Li-birnessite were investigated by ex situ soft X-ray absorption spectroscopy (sXAS) and X-ray pair distribution function (PDF) analysis. The combined sXAS and PDF with electrochemical analyses disclosed that the reversible Mn redox and suppressed phase transitions in Dh Li-birnessite contribute to dramatically improving its electrochemical reversiblity during cycling. Our findings underscore the substantial effects of controlled static disorder on the structural stability and electrochemical reversibility of a layered lithium manganese oxide, Li-birnessite, which extends the practical capacity of layered oxides close to their theoretical limit.
AB - Layered lithium manganese oxides suffer from irreversible phase transitions induced by Mn migration and/or dissolution associated with the Jahn-Teller effect (JTE) of Mn3+, leading to inevitable capacity fading during cycling. The popular doping strategy of oxidizing Mn3+ to Mn4+ to relieve the JTE cannot completely eliminate the detrimental structural collapse from the cooperative JTE. Therefore, they are considered to be impractical for commercial use as cathode materials. Here, we demonstrate a layered lithium manganese oxide that can be charged and discharged without any serious structural collapse using metastable Li-birnessite with controlled structural disorder. Although Li-birnessite is thermodynamically unstable under ambient conditions, Li ion exchange into Na-birnessite followed by an optimal dehydration resulted in a disordered Li-birnessite. The control over crystal water in the interlayer provides intriguing short-range order therein, which can help to suppress parasitic Mn migration and dissolution, thereby ensuring a reversible electrochemical cycling. The Mn redox behavior and local structure change of the Li-birnessite were investigated by ex situ soft X-ray absorption spectroscopy (sXAS) and X-ray pair distribution function (PDF) analysis. The combined sXAS and PDF with electrochemical analyses disclosed that the reversible Mn redox and suppressed phase transitions in Dh Li-birnessite contribute to dramatically improving its electrochemical reversiblity during cycling. Our findings underscore the substantial effects of controlled static disorder on the structural stability and electrochemical reversibility of a layered lithium manganese oxide, Li-birnessite, which extends the practical capacity of layered oxides close to their theoretical limit.
UR - http://www.scopus.com/inward/record.url?scp=85210007964&partnerID=8YFLogxK
U2 - 10.1021/jacs.4c12248
DO - 10.1021/jacs.4c12248
M3 - Article
C2 - 39576725
AN - SCOPUS:85210007964
SN - 0002-7863
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
ER -