Structural vibration-based damage classification of delaminated smart composite laminates

Asif Khan, Heung Soo Kim, Jung Woo Sohn

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Separation along the interfaces of layers (delamination) is a principal mode of failure in laminated composites and its detection is of prime importance for structural integrity of composite materials. In this work, structural vibration response is employed to detect and classify delaminations in piezo-bonded laminated composites. Improved layerwise theory and finite element method are adopted to develop the electromechanically coupled governing equation of a smart composite laminate with and without delaminations. Transient responses of the healthy and damaged structures are obtained through a surface bonded piezoelectric sensor by solving the governing equation in the time domain. Wavelet packet transform (WPT) and linear discriminant analysis (LDA) are employed to extract discriminative features from the structural vibration response of the healthy and delaminated structures. Dendrogram-based support vector machine (DSVM) is used to classify the discriminative features. The confusion matrix of the classification algorithm provided physically consistent results.

Original languageEnglish
Title of host publicationActive and Passive Smart Structures and Integrated Systems XII
EditorsJae-Hung Han, Alper Erturk
PublisherSPIE
ISBN (Electronic)9781510616868
DOIs
StatePublished - 2018
EventActive and Passive Smart Structures and Integrated Systems XII 2018 - Denver, United States
Duration: 5 Mar 20188 Mar 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10595
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceActive and Passive Smart Structures and Integrated Systems XII 2018
Country/TerritoryUnited States
CityDenver
Period5/03/188/03/18

Keywords

  • classification
  • Delamination
  • piezobonded laminated composite
  • structural vibration
  • wavelet packet transform

Fingerprint

Dive into the research topics of 'Structural vibration-based damage classification of delaminated smart composite laminates'. Together they form a unique fingerprint.

Cite this