Superhydrophilic coatings with intricate nanostructure based on biotic materials for antifogging and antibiofouling applications

Moonhyun Choi, Lin Xiangde, Joo Hee Park, Daheui Choi, Jiwoong Heo, Minwook Chang, Chanhui Lee, Jinkee Hong

Research output: Contribution to journalArticlepeer-review

78 Scopus citations

Abstract

Methods for creating unique superhydrophilic interfaces by means of layer-by-layer (LbL) assembly have been demonstrated, and such interfaces have been used extensively in a variety of practical applications. Further, fabricating multifunctional superhydrophilic coatings using low-cost, nontoxic, environment-friendly, and plentiful materials from biological resources is highly desirable. Herein, superhydrophilic coatings with a highly jagged surface morphology were synthesized based on the electrostatic-interaction- or hydrogen-bonding-based LbL assembly of the biotic materials chitosan (CHI) and rice husk ash (RHA) nanosilica, which are abundantly available in nature. The synthesized multilayered (CHI/RHA nanosilica)n films were highly transparent and resisted fogging, frosting, and biofouling. Specifically, given the water-absorbing capability of the films, they showed excellent antifogging and antifrosting properties even under aggressive fogging and frosting conditions. Further, the as-prepared superhydrophilic multilayered films, which had a rough surface structure at the micro- and nanoscale, showed potential in reducing the attachment of proteins and various microorganisms, significantly preventing the phenomenon of biofouling in stagnant liquids. Hence, this work provides a new route for assembling superwetting coatings from cost-effective natural materials for use in industrial applications.

Original languageEnglish
Pages (from-to)463-470
Number of pages8
JournalChemical Engineering Journal
Volume309
DOIs
StatePublished - 1 Feb 2017

Keywords

  • Antibiofouling
  • Antifogging
  • Layer-by-layer assembly
  • Nanofilm
  • Rice husk silica
  • Superhydrophilic coating

Fingerprint

Dive into the research topics of 'Superhydrophilic coatings with intricate nanostructure based on biotic materials for antifogging and antibiofouling applications'. Together they form a unique fingerprint.

Cite this