TY - JOUR
T1 - Surface protection and nucleation enhancement of zinc anode with graphene and doped carbon nanotubes for high-performance energy storage
AU - Yun, Kihyuk
AU - An, Geon Hyoung
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2024/1/1
Y1 - 2024/1/1
N2 - Owing to their high-power density, long cycling performance, excellent safety, and eco-friendliness, Zn-ion hybrid supercapacitors (ZIHC) have attracted attention as a next-generation energy storage technology to replace conventional lithium-ion batteries. However, the dissolution of Zn in ZIHCs, their low wettability and limited number of nucleation sites for Zn plating have limited their further application. To address these, research has been undertaken to enhance safety by applying a protective layer, such as carbon, ceramics, or polymers, onto the zinc anodes. Nevertheless, achieving exceptional energy storage performance remains insufficient. In this study sequentially coated Zn electrode surface with graphene and carbon nanotubes (CNT), and F and N were simultaneously doped in the carbon lattice of the top layer of the CNTs. Owing to its excellent safety, improved wettability, and numerous nucleation sites for Zn plating, the surface-engineered Zn anode exhibited improved energy–power density (255 to 141 Wh kg−1 between 800 and 32,000 W kg−1) and long lifespan capability of 93 % after 45,000 cycles. The proposed strategy is a highly promising approach for enhancing the energy storage performance of ZIHCs.
AB - Owing to their high-power density, long cycling performance, excellent safety, and eco-friendliness, Zn-ion hybrid supercapacitors (ZIHC) have attracted attention as a next-generation energy storage technology to replace conventional lithium-ion batteries. However, the dissolution of Zn in ZIHCs, their low wettability and limited number of nucleation sites for Zn plating have limited their further application. To address these, research has been undertaken to enhance safety by applying a protective layer, such as carbon, ceramics, or polymers, onto the zinc anodes. Nevertheless, achieving exceptional energy storage performance remains insufficient. In this study sequentially coated Zn electrode surface with graphene and carbon nanotubes (CNT), and F and N were simultaneously doped in the carbon lattice of the top layer of the CNTs. Owing to its excellent safety, improved wettability, and numerous nucleation sites for Zn plating, the surface-engineered Zn anode exhibited improved energy–power density (255 to 141 Wh kg−1 between 800 and 32,000 W kg−1) and long lifespan capability of 93 % after 45,000 cycles. The proposed strategy is a highly promising approach for enhancing the energy storage performance of ZIHCs.
KW - Anode
KW - Carbon nanotube
KW - Doping
KW - Graphene
KW - Zn-ion hybrid supercapacitor
UR - http://www.scopus.com/inward/record.url?scp=85177846535&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2023.147303
DO - 10.1016/j.cej.2023.147303
M3 - Article
AN - SCOPUS:85177846535
SN - 1385-8947
VL - 479
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 147303
ER -