TY - JOUR
T1 - Synergistic photocatalysis of Z-scheme type Fe2O3/g-C3N4 heterojunction coupled with reduced graphene oxide
AU - Park, Soo Hyun
AU - Kim, Taelin
AU - Kadam, Abhijit N.
AU - Bathula, Chinna
AU - Ghfar, Ayman A.
AU - Kim, Hansang
AU - Lee, Sang Wha
N1 - Publisher Copyright:
© 2022
PY - 2022/6
Y1 - 2022/6
N2 - The rational design of a Z-scheme heterojunction that appropriately connects two semiconductors with different bandgap with matched energies is of great significance for the efficient separation of charge carries and maximum solar-light harvesting. Furthermore, achieving a morphologically controlled, an easily synthesized, and an effective solar-light-driven photocatalyst still presents a significant challenge. Firstly, one-step hydrothermal method was used to facilely synthesize C-Fe2O3@rGO by incorporating cubic shape hematite (C-Fe2O3) with reduced graphene oxide (rGO). Then, graphitic carbon nitride (g-C3N4) was combined with C-Fe2O3@rGO via a solvothermal reaction, which resulted in the ternary heterojunction of C-Fe2O3@rGO@g-C3N4. Under exposer of simulated solar light, the photocatalytic performance of the constructed materials was assessed towards the destruction of methyl orange (MO) organic contaminant. For comparison, C-Fe2O3 and C-Fe2O3@rGO exhibited a very low photocatalytic activity, with degradation efficiencies of MO dye as 1% and 8%, respectively. In contrast, C-Fe2O3@rGO@g-C3N4 (5.0 wt.% g-C3N4) demonstrated a significantly greater photocatalytic efficiency of ∼40%, due to the formation of a ternary heterojunction. This structure ensures enhanced separation of charge carriers and extended solar-light harvesting. Strikingly, in the existence of a hole scavenger, C-Fe2O3@rGO@g-C3N4 had a significantly increased photocatalytic efficiency of 93%. The rate constants were 1.6 × 10−4 and 1.1 × 10−3 min−1before and after adding the hole scavenger EDTA-2Na, respectively. This result clearly confirms the successful formation of a Z-scheme nature heterojunction composed of two semiconductors (Fe2O3 and g-C3N4) and conductive rGO. This synthetic approach can provide a guideline for the rational engineering as well as facile fabrications Z-scheme systems devoid of noble metals for advanced photocatalytic applications.
AB - The rational design of a Z-scheme heterojunction that appropriately connects two semiconductors with different bandgap with matched energies is of great significance for the efficient separation of charge carries and maximum solar-light harvesting. Furthermore, achieving a morphologically controlled, an easily synthesized, and an effective solar-light-driven photocatalyst still presents a significant challenge. Firstly, one-step hydrothermal method was used to facilely synthesize C-Fe2O3@rGO by incorporating cubic shape hematite (C-Fe2O3) with reduced graphene oxide (rGO). Then, graphitic carbon nitride (g-C3N4) was combined with C-Fe2O3@rGO via a solvothermal reaction, which resulted in the ternary heterojunction of C-Fe2O3@rGO@g-C3N4. Under exposer of simulated solar light, the photocatalytic performance of the constructed materials was assessed towards the destruction of methyl orange (MO) organic contaminant. For comparison, C-Fe2O3 and C-Fe2O3@rGO exhibited a very low photocatalytic activity, with degradation efficiencies of MO dye as 1% and 8%, respectively. In contrast, C-Fe2O3@rGO@g-C3N4 (5.0 wt.% g-C3N4) demonstrated a significantly greater photocatalytic efficiency of ∼40%, due to the formation of a ternary heterojunction. This structure ensures enhanced separation of charge carriers and extended solar-light harvesting. Strikingly, in the existence of a hole scavenger, C-Fe2O3@rGO@g-C3N4 had a significantly increased photocatalytic efficiency of 93%. The rate constants were 1.6 × 10−4 and 1.1 × 10−3 min−1before and after adding the hole scavenger EDTA-2Na, respectively. This result clearly confirms the successful formation of a Z-scheme nature heterojunction composed of two semiconductors (Fe2O3 and g-C3N4) and conductive rGO. This synthetic approach can provide a guideline for the rational engineering as well as facile fabrications Z-scheme systems devoid of noble metals for advanced photocatalytic applications.
KW - Cubic hematite
KW - Graphitic carbon nitride
KW - Hydrothermal
KW - Reduced graphene oxide
KW - Z-scheme heterojunction
UR - http://www.scopus.com/inward/record.url?scp=85127171573&partnerID=8YFLogxK
U2 - 10.1016/j.surfin.2022.101910
DO - 10.1016/j.surfin.2022.101910
M3 - Article
AN - SCOPUS:85127171573
SN - 2468-0230
VL - 30
JO - Surfaces and Interfaces
JF - Surfaces and Interfaces
M1 - 101910
ER -